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Abstract

We present an open source cross platform technology
for 3D face tracking and analysis. It contains a full
stack of components for complete face understanding:
detection, head pose tracking, facial expression and
action units recognition. Given a depth sensor, one
can combine FaceCept3D modules to fulfill a specific
application scenario. Key advantages of the technology
include real time processing speed and ability to handle
extreme head pose variations. Possible application areas of
the technology range from human computer interaction to
active aging platform, where precise and real-time analysis
is required. The technology is available for scientific
community.

1. Introduction
Over the past years, there has been an increasing interest

in technologies aimed at supporting or enhancing people’s
lives (especially elderly class) in various environments,
such as shopping malls, museums or at home [1, 2].
Understanding the affective state of these subjects offers
important clues in decoding their state of mind, useful
in monitoring tasks. In addition, many studies require
estimates of the direction and level of attention for modeling
different types of interactions. In such cases, the head pose
estimation becomes a valuable proxy.

There is one important constraint all these scenarios
share when looking for solving the above mentioned tasks:
non-invasiveness, i.e. the solution must not hinder the
naturalness of the subject’s behavior. As a consequence, the
vision sensors are typically placed out of the direct sight of
the subject. FaceCept3D is motivated by challenges arising
from these types of scenarios and is able to successfully
address them in a unified, open source and cross-platform
solution. Additionally, our system can be deployed in a
much broader spectrum of applications (e.g. those cases
for which the face is fully visible to the sensor), being able
to maintain state-of-the-art performance, as shown in [34].

Figure 1. Several examples of FaceCept3D applied to the
RGB-Depth stream. The system requires a person specific
template to operate. Typically, the template creation is performed
in advance and takes only 3 seconds to complete.

Several examples of correctly handled self-occlusions due
to face rotations are given in the Figure 1. The code of the
technology is available on GitHub1.

2. Related work

Since our proposed system addresses multiple tasks in
a unified solution, we will briefly review related work
for each separate task, namely 3D head pose estimation,
pose-invariant facial expression and facial action unit
recognition.

2.1. Head pose estimation in 3D

There is an abundance of work ([21]) exploiting 2D
information for estimating head pose (HPE). However, 2D
acquisition devices are sensitive to illumination changes,
making it difficult to find simple enough features to
meet real-time constraints. Naturally, depth images are
not influenced by illumination and, as such, become an
attractive alternative for HPE. As a consequence, many
research groups have investigated the use of 3D data,

1https://github.com/sergeytulyakov/FaceCept3D

1



especially since sensors such as Kinect have become
affordable.

One way of addressing HPE in 3D is to treat the task as
a mesh registration problem. Weise et al. [36] present a
method for transferring facial expressions from a user to an
animated avatar. They first create a person-specific model
for a performer by manually marking correspondences
between the model and the user. This operation is
done automatically in [15], eliminating the requirement
to do offline tuning of the system to a particular human
performer. However, methods like [36, 29, 17, 7] still rely
on landmarks detection, such as eyes, nose, mouth and other
facial points. In the context of severe head orientations,
accurate correspondence estimation is no longer possible
(due to self occlusions) and the accuracy of the system
decreases. We too build a personalized template for a given
user, but in contrast to previous work, our template creation
stage is offline, fully automatic and estimating the head pose
needs no facial landmarks available.

In [13], an approach for head pose estimation based on
random regression forests is described. The results obtained
on Biwi Kinect Database are promising (the percentage of
correctly identified test examples within the threshold of
10◦ degrees is 90.4%), however, the case of extreme head
orientations is not covered in their study. In [6] the authors
propose a novel shape signature to help identifying nose
position in range images. Using parallel computing, they
evaluate many pose hypotheses reaching a hit rate of 97.8%
corresponding to an error threshold of 15◦ at 55.8 fps. In the
same context, in [22] a particle swarm optimization search
generates remarkably small uncertainty when predicting
head pose (around 2◦ standard deviation for all angles), but,
similar to [6], they also resort to massive parallel resources
coming from GPU.

In order to handle large pose variations and process
non-frontal facial views, we fuse two independent
components: a detection module and a tracking one. In
addition, by keeping the pipeline simple, no dedicated
hardware is needed to speed up processing, reaching
real-time performance on standard CPUs.

2.2. Pose-invariant facial expression recognition

In the past decade, much work has been done on static
facial expression recognition dealing with non frontal poses
by exploiting 3D data. Such methods are split in [25]
into four main categories: distance based, patch based,
morphable models and 2D representations.

Distance based methods extract the (3D) landmark
positions of the input face and use inter-landmark distances
to classify facial expressions [28, 16]. Obvious limitations
arise from the difficulty of localizing facial landmarks in
cases of severe self-occlusions. Patch based approaches
extract local features from either every point of a 3D

mesh or around specific landmarks [25]. For instance, in
[18] facial landmarks on the 3D surface of a face specify
the positions in which patches are described by means of
level curves. Probe and gallery expression samples are
compared computing the geodesic distance between such
curves. Note that in our approach we extract patches from
the 2D projection of the 3D face point cloud representation.
In [20] a morphable model is fitted to the face point cloud
by matching a set of landmarks, which need to be localized
both on the prototypical model and on the analyzed face.

The 2D approaches [25] are the category most similar to
our method and are based on mapping the 3D data onto 2D
representations. Once the mapping is computed, different
features can be extracted from the 2D representation. For
instance, in [24] depth maps and Azimuthal Projection
Distance Images are filtered with different methods, such
as Gabor filters, LBP features, etc., with the goal of action
unit detection. In [4] a depth map of the 3D facial meshes
is computed and SIFT features are extracted in this map
around specific landmarks. In our approach we do not need
to accurately localize landmarks on our 2D representation
and a rough estimation of the head pose together with the
position of the eyes in the depth map is sufficient to compute
our cylindrical projection surface. Moreover, our Random
Forest based joint selection of features and channels makes
it possible to adaptively choose among a huge number of
possible features.

Closest to our system in systematically addressing severe
head orientations is the work of [23] in which the authors
use a discrete set of 34 poses (spanning angles between
−45◦ and 45◦ on the yaw direction and between −30◦ and
30◦ for the tilt) along with the frontal pose in order to learn
a mapping function between facial landmark positions of
a given non-frontal face and the frontal correspondence.
At testing time, the head pose is estimated and the closest
training poses are used to project the landmarks onto the
frontal pose. Finally, a multi-class SVM is applied to
the frontally-normalized landmark positions to categorize
the facial expressions. One drawback of this work is
the necessity to accurately estimate a large number of
facial landmarks. Many systems estimating such landmarks
fail when large head pose variations come into play and,
as such, alter drastically the performance of subsequent
processing stages.

2.3. Facial Action Unit recognition

Along with facial expression recognition, action unit
analysis has been in the center of attention of many research
groups. Action units (AU) are anatomical descriptors which
correspond to various facial muscle contractions. They can
occur alone or in hundreds of combinations which account
for all possible facial expressions. In other words, facial
expressions in general (and Eckman’s 6 prototypical ones in
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Figure 2. A pipeline for tracking the head pose and recognizing
facial expressions. Processors are executed by the grabber one
after another.

particular) are manifestations of a small subset of AUs. The
most commonly used taxonomy for action units is described
by FACS [12] and typically research focuses on a small
subset only.

There is a large body of research on AU recognition from
both 2D and 3D data (see recent surveys for reference [39,
11, 26, 19]). Approaches are generally split into static and
dynamic ones. In the first category, AU recognition is posed
as a binary (1-vs-all) or multi-class classification problem,
using different features, typically extracted around salient
facial landmarks (such as SIFT [9, 42, 38] or LBP-based [3,
24]) and different classifiers (SVM, AdaBoost). In dynamic
modeling, frames are grouped into sequences and temporal
models (for instance HMMs, CRFs [8, 27, 33]) are used to
dissociate between AU components, such as onset, apex and
offset.

More recently [35, 42], efforts have been channeled
into modeling dependencies between combinations of
AUs, showing improved performance w.r.t. the simpler
models. In [42] a joint patch and multi-label learning
framework for AU recognition is being proposed, in
which dependencies between certain pairs of AUs are
modeled using a matrix that encodes positive correlations
and negative competitions computed from an ensemble of
datasets. It shows superior results over both methods that
focus only on learning patch importance [30, 43] as well as
those adopting the multi-label strategy [40].

As in the case of face analysis in general, action unit
recognition is now addressing spontaneous scenarios (i.e.
cases in which data are generated following carefully
planned elicitation protocols, including subjects that have
not been particularly trained or prepared for the task),
moving one step closer to real life situations ([41]). Recent
papers and challenges [32] are now publishing results along
this line.
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Figure 3. Person-specific template creation pipeline. Prior to
creating the point cloud, we filter out noise by convolving the
depth image with a Gaussian kernel. Voxel-grid algorithm on the
smooth cloud is used to obtain a cloud with fewer points. Pairwise
registration is performed on the consecutive clouds.

3. Modular architecture
FaceCept3D is a set of independent modules. All

modules are split into three major parts:

• Recognition modules include filtering, registration,
feature extraction, machine learning methods and
other components.

• Pipeline modules, that encapsulate underlined
platform and sensor-specific technical details.

• User interfaces modules, that enable viewing,
annotating and displaying the results.

Figure 2 shows a typical pipeline for an automatic
head pose tracking and facial expression recognition.
A sensor dependent grabber module executes a queue
of processors that perform necessary actions using the
recognition components.

4. Head pose tracking
In order to track a face, FaceCept3D builds offline a

person-specific 3D head template for a person in front of the
sensor. When the template is ready a modified version of the
Iterative Closest Point (ICP) [5] method is used to register it
with a scene and obtain the head pose (more details in [31]).
The process of person-specific template creation is outlined
in Figure 3 and takes around 3 seconds on a embedded Intel
processor.

Our modified version of the ICP algorithm uses
history-based points weighting as described in [31] to guide
the optimization procedure of ICP to a promising descend
direction and reach local minima faster. Table 1 shows
that our version of ICP converges almost 4 times faster.
Several examples of recognized head poses are given in the
Figure 6. Note the difficult viewing and head orientation
correctly handled by the system.

To evaluate head pose tracking accuracy we use the
Dali3DHP RGB-D dataset [31]. This database contains
two sessions of range and RGB images of 33 subjects.



Table 1. Comparison between history-based weighted ICP and
generic ICP in computational time

# Iterations Fps

Generic ICP 14.64 10.05
History-based weighted ICP 3.16 38.87

During the first session a subject is asked to perform a
left-to-right head movement. This session is used to create
a person specific head template. During the second session,
a subject performs a set of head movements. To ensure
uniform distribution over all possible head pose ranges,
all the subjects follow a special head movement pattern
on the wall. Ground truth is recorded using a Shimmer
sensor 2. Table 2 shows the results. Note that weighted
template tracker provides a slightly better results than the
full template tracker, while maintaining 4 times faster
speed.

Table 2. Head pose estimation result obtained on Dali3DHP
Dataset. Mean average error and the standard deviation (in
brackets) are reported.

yaw tilt

Full Template 4.06 (5.89) 8.21 (11.45)

Weighted Template 3.93 (5.23) 8.21 (11.31)

4.1. Head pose invariant face representation

FaceCept3D head pose tracker returns head pose
orientation in real-time. Since subjects are not constrained
in head movements, many parts of the face could
be self-occluded. Therefore a head pose invariant
representation is required. We build such representation
by constructing a cylinder around the face and projecting
the face onto the cylinder. Figure 4 shows this cylindrical
sampling pipeline.

Several examples of head pose invariant face
representation are given in Figure 4 bottom row. Note
how the head pose problem is transformed into a missing
information problem. Nearest neighbor interpolation is the
most computationally expensive step in this pipeline. In
order to run it in real-time FaceCept3D has an efficient way
to compute it.

5. Facial Expression and Action Unit
Recognition

Once computed, the head pose invariant face
representation is subject to a dense sampling procedure
with overlapping patches of fixed size (see Figure 5). For
each patch position, we train a separate classifier, followed
by a late fusion stage for the final estimate. In the case of

2http://shimmersensing.com/
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Figure 4. Top row (left to right): an example of face scan with
two eyes detected. The cylindrical head model (CHM) parameters.
Our CHM with 150 × 120 sampling points imposed on the face
scan. Sampling point values computed based on the 3 nearest
neighbors. An example of pose-invariant face representation.
Bottom row: examples of sampled faces under varying head poses
and facial expressions. The head rotation (tilt, yaw) is given in
the brackets.
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Figure 5. From head pose invariant face representation to the
expression label (left to right): initial 2D face representation,
channel computation, dense sampling with overlapping patches,
random forest classification, decision fusion and labeled sample.

action unit (AU) recognition, we employ a 1-vs-all strategy
for every patch. The dense sampling approach comes along
with two important benefits: (i) it offers an elegant way
to cope with missing information, as the empty patches
are simply discarded at decision making stage and (ii) it is
naturally suited for modeling patch importance, as different
patch votes can be weighted differently (especially in the
case of AU recognition).

From each face image encoding depth information (i.e
each pixel value reflects the distance between the object and
the sensor), we first compute channel representations [10],
then we split the channels into overlapping patches, from
which generalized Haar features are extracted. Random
Forests are then used to perform patch level predictions,
which in turn are aggregated for the final estimate [34].

Figure 7 shows the recognition rate distribution over
the yaw/tilt space on BU-3DFE dataset [37]. The angle
ranges are divided into blocks of equal size 15◦ × 15◦ and
performance is computed on samples belonging to each
block. The gray area corresponds to a reduced set of
angles, commonly used in previous work (e.g. [23]). While
maintaining state-of-the-art performance on the reduced
set, FaceCept3D is able to extend its operating point to
severe head rotation angles with only a reasonable loss in



Figure 6. For every subject three images are given. The left one represents a template with the most important points marked in red. The
image in the middle shows the template fitted to the point cloud. The right image shows the view from the walker. Note that for some
subjects the face is almost completely hidden.
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Figure 7. Recognition rate distribution over the yaw/tilt space. The
gray area shows the reduced head-pose range reported in [23].

recognition accuracy.

Table 3. Action Unit recognition results obtained on BP4D
AU Index F1 Norm Acc Norm

1 0.46 0.60
2 0.12 0.50
4 0.36 0.56
6 0.80 0.79
7 0.73 0.70

10 0.79 0.77
12 0.82 0.81
14 0.68 0.66
15 0.33 0.56
17 0.58 0.63
23 0.43 0.60

Avg 0.56 0.65

Finally, in Table 3, we show preliminary results
on AU recognition on BP4D dataset [41], following a
leave-one-subject-out protocol. As a performance measure,
we report the normalized F1 score with a skew factor [14],
computed as F1Norm = 2sPR

2sR+P , where R and P are
the Recall and Precision, respectively, and s is the ratio

between the number of negative samples and the number of
positive ones included in the test set. In a similar manner we
compute the skew-normalized accuracy, as AccNorm =

TP+TN/s
TP+TN/s+FP/s+FN .

6. Conclusions

In this paper we introduce FaceCept3D, an open source
cross platform system for 3D face analysis. FaceCept3D
is able to accurately infer head pose, perform face
frontalization and estimate facial expressions in real-time.
Our system is designed to cope with a wide range of head
pose variations, typically seen in applications for which
non-invasiveness is a particularly important requirement.

References
[1] http://cordis.europa.eu/project/rcn/

101220_en.html.
[2] http://cordis.europa.eu/project/rcn/

194087_en.html.
[3] N. Bayramoglu, G. Zhao, and M. Pietikainen. Cs-3dlbp

and geometry based person independent 3d facial action unit
detection. In ICB, pages 1–6, 2013.

[4] S. Berretti, B. B. Amor, M. Daoudi, and A. D. Bimbo.
3d facial expression recognition using sift descriptors of
automatically detected keypoints. The Visual Computer,
27(11):1021–1036, 2011.

[5] P. Besl and N. D. McKay. A method for registration of 3-D
shapes. PAMI, 14(2):239–256, 1992.

[6] M. D. Breitenstein, D. Kuettel, T. Weise, L. Van Gool, and
H. Pfister. Real-time face pose estimation from single range
images. In CVPR, pages 1–8, 2008.

[7] K. I. Chang, W. Bowyer, and P. J. Flynn. Multiple nose
region matching for 3d face recognition under varying facial
expression. PAMI, 28(10):1695–1700, 2006.

[8] K.-Y. Chang, T.-L. Liu, and S.-H. Lai. Learning
partially-observed hidden conditional random fields for
facial expression recognition. In CVPR, pages 533–540,
2009.

http://cordis.europa.eu/project/rcn/101220_en.html
http://cordis.europa.eu/project/rcn/101220_en.html
http://cordis.europa.eu/project/rcn/194087_en.html
http://cordis.europa.eu/project/rcn/194087_en.html


[9] W. S. Chu, F. D. L. Torre, and J. F. Cohn. Selective transfer
machine for personalized facial action unit detection. In
Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on. IEEE, 2013.

[10] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009.

[11] S. Du, Y. Tao, and A. M. Martinez. Compound facial
expressions of emotion. National Academy of Sciences,
111(15):E1454–E1462, 2014.

[12] P. Ekman and W. V. Friesen. Facial action coding system.
1977.

[13] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Gool.
Random Forests for Real Time 3D Face Analysis. IJCV,
101(3):437–458, 2012.

[14] L. Jeni, J. F. Cohn, F. De La Torre, et al. Facing imbalanced
data–recommendations for the use of performance metrics.
In ACII, pages 245–251, 2013.

[15] H. Li, J. Yu, Y. Ye, and C. Bregler. Realtime facial animation
with on-the-fly correctives. In SIGGRAPH, volume 32,
page 1, 2013.

[16] X. Li, Q. Ruan, and Y. Ming. 3D facial expression
recognition based on basic geometric features. In ICSP,
2010.

[17] X. Lu and A. K. Jain. Automatic feature extraction for
multiview 3d face recognition. In AFGR, pages 585–590,
2006.

[18] A. Maalej, B. B. Amor, M. Daoudi, A. Srivastava, and
S. Berretti. Shape analysis of local facial patches for
3d facial expression recognition. Pattern Recognition,
44(8):1581–1589, 2011.

[19] A. Martinez and S. Du. A model of the perception of facial
expressions of emotion by humans: Research overview and
perspectives. JMLR, 13(1):1589–1608, 2012.

[20] I. Mpiperis, S. Malassiotis, and M. G. Strintzis. Bilinear
models for 3-d face and facial expression recognition.
Information Forensics and Security, 3(3):498–511, 2008.

[21] E. Murphy-Chutorian and M. M. Trivedi. Head Pose
Estimation in Computer Vision: A Survey. PAMI,
31(4):607–626, 2009.

[22] P. Padeleris, X. Zabulis, and A. A. Argyros. Head
pose estimation on depth data based on particle swarm
optimization. In CVPRW, pages 42–49, 2012.

[23] O. Rudovic, M. Pantic, and I. Patras. Coupled gaussian
processes for pose-invariant facial expression recognition.
PAMI, 35(6):1357–1369, 2013.

[24] G. Sandbach, S. Zafeiriou, and M. Pantic. Binary pattern
analysis for 3d facial action unit detection. In BMVC, 2012.

[25] G. Sandbach, S. Zafeiriou, M. Pantic, and L. Yin. Static and
dynamic 3d facial expression recognition: A comprehensive
survey. IVC, 30(10):683–697, 2012.

[26] G. Sandbach, S. Zafeiriou, M. Pantic, and L. Yin. Static and
dynamic 3d facial expression recognition: A comprehensive
survey. IVC, 30(10):683–697, 2012.

[27] L. Shang and K.-P. Chan. Nonparametric discriminant hmm
and application to facial expression recognition. In CVPR,
pages 2090–2096, 2009.

[28] H. Soyel and H. Demirel. Facial expression recognition
using 3d facial feature distances. In ICIAR, 2007.

[29] Y. Sun and L. Yin. Automatic pose estimation of 3d facial
models. In ICPR, pages 1–4, 2008.

[30] S. Taheri, Q. Qiu, and R. Chellappa. Structure-preserving
sparse decomposition for facial expression analysis. TIP,
23(8):3590–3603, 2014.

[31] S. Tulyakov, R. L. Vieriu, S. Semeniuta, and N. Sebe. Robust
Real-Time Extreme Head Pose Estimation. In ICPR, 2014.

[32] M. Valstar, J. Girard, T. Almaev, G. McKeown, M. Mehu,
L. Yin, M. Pantic, and J. Cohn. Fera 2015-second facial
expression recognition and analysis challenge. IEEE ICFG,
2015.

[33] M. F. Valstar and M. Pantic. Fully automatic recognition of
the temporal phases of facial actions. Systems, Man, and
Cybernetics, 42(1):28–43, 2012.

[34] R.-L. Vieriu, S. Tulyakov, S. Semeniuta, E. Sangineto, and
N. Sebe. Facial expression recognition under a wide range
of head poses. In FG, 2015.

[35] Z. Wang, Y. Li, S. Wang, and Q. Ji. Capturing global
semantic relationships for facial action unit recognition. In
ICCV, pages 3304–3311, 2013.

[36] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime
performance-based facial animation. In SIGGRAPH, 2011.

[37] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato. A 3D
facial expression database for facial behavior research. In
FG, 2006.

[38] A. Yuce, H. Gao, and J.-P. Thiran. Discriminant multi-label
manifold embedding for facial action unit detection. In FG,
FERA 2015 Challenge, 2015.

[39] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang. A
survey of affect recognition methods: Audio, visual, and
spontaneous expressions. PAMI, 31(1):39–58, 2009.

[40] X. Zhang, M. H. Mahoor, S. M. Mavadati, and J. F. Cohn.
A l p-norm mtmkl framework for simultaneous detection of
multiple facial action units. In WACV, pages 1104–1111,
2014.

[41] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,
A. Horowitz, and P. Liu. A high-resolution spontaneous 3d
dynamic facial expression database. In FG, pages 1–6, 2013.

[42] K. Zhao, W.-S. Chu, F. De la Torre, J. F. Cohn, and H. Zhang.
Joint patch and multi-label learning for facial action unit
detection. In CVPR, pages 2207–2216, 2015.

[43] L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, and D. N.
Metaxas. Learning active facial patches for expression
analysis. In CVPR, pages 2562–2569, 2012.


