
Stochastic Analysis of Buffer–less Pipelines of Real–Time
Tasks

Luca Abeni
University of Trento

Via Sommarive 9, Povo
Trento (Italy)

luca.abeni@unitn.it

Daniele Fontanelli
University of Trento

Via Sommarive 9, Povo
Trento (Italy)

daniele.fontanelli@unitn.it

Luigi Palopoli
University of Trento

Via Sommarive 9, Povo
Trento (Italy)

palopoli@disi.unitn.it

Bernardo Villalba Frías
University of Trento

Via Sommarive 9, Povo
Trento (Italy)

br.villalbafrias@unitn.it

ABSTRACT

In this paper, we consider real–time applications consisting
of multiple tasks, which are executed on computing cores
managed by a resource reservatin scheduler. The tasks are
organised in a linear topology (pipeline). The result pro-
duced by a task as a result of one of its activations is used as
input for the task at the next stage of the pipeline. The time
required for each execution of a task is a random variable.
We assume a bufferless communication semantic, whereby
a data item produced by a task is outright dropped if the
consumer is not ready to execute.

Assuming a bufferless communication simplifies the com-
putation of the probability distribution of the end–to–end
delay, since when an item is correctly processed by the pipeline
its accumulated delay is simply the sum of the delays in-
curred in each stage. However, data can be dropped at any
stage if the pipeline, and this requires a precedure to com-
pute the probability of such an event. This computation
is the main problem addressed in the paper, where we also
show the practical applicability of the approach through a
set of experiments.

CCS Concepts

•Computer systems organization → Real-time sys-
tems; Embedded software;

Keywords

Stochastic Analysis, Soft Real-Time, multiprocessor

1. INTRODUCTION
Probabilistic analysis of real–time systems is increasingly

used to design applications that can tolerate a limited num-
ber of missed deadlines. This kind of analysis is based on the
notion of probabilistic deadlines, which associates a deadline
with the probability that it will be respected (as opposed to
“traditional” hard deadlines that must always be respected).
In this setting, it is said that a real–time design guaran-
tees a probabilistic deadline if the deadline is met with the
desired probability for a candidate choice of the scheduling
parameters.

A different viewpoint of stochastic analysis is based on the
notion of“probabilistic worst–case execution time”(pWCET)
[5], for which each task is associated with a stochastic worst–
case execution time depending on the input data set and on
random fluctuations in the system architecture (e.g., due to
cache effects), and a standard hard real–time design is car-
ried out associating a probability with the event that the
guarantee is actually correctly given.

Different analysis techniques have been proposed for prob-
abilistic guarantees assuming fixed–priority [11, 8, 9, 7] or
Earliest Deadline First (EDF) schedulers [17]. When the
scheduling interference among the tasks is explicitly consid-
ered, the analysis turns out to be much simpler if the sched-
uler permits the analysis of the behaviour of each task inde-
pendently (temporal isolation). This is possible for reservation–
based schedulers [1]. Different authors in the past have anal-
ysed the stochastic behaviour of this type of schedulers using
numerical techniques [4, 18] or developing analytical bounds
[22, 21, 20, 19].

Excluding some notable exceptions [15, 16], most of the
previous research on probabilistic analysis focused on non–
interacting real–time tasks (that is, applications composed
of one single task). However, real–time applications imple-
mented as pipelines of computing tasks are increasingly pop-
ular in various fields, including multimedia, computer vision
and control. Examples of deterministic analysis of pipelines
of real–time tasks can be found in the literature [12, 13, 14,
6], and this work extends them in two ways: first of all,
probabilistic analysis (instead of deterministic analysis) is
performed; second, this paper considers a buffer–less model
for inter–task communication. According to this buffer–less
communication model (that can be seen as a multi–task gen-
eralisation of the Continuous Stream model [10] recently
proposed for real–time control applications), if a stage of

the pipeline generates some data when the next stage is still
busy, the data is discarded (dropped).

Buffer–less communication can be interesting for real–
time applications because it allows early dropping of data
that will probably be delivered too late. In this way, it is
possible to avoid spending computational resources in pro-
cessing data that will not be delivered in time. If a real–time
application can tolerate the fact that some tasks’ instances
are not executed (instead of being executed and completed
after their deadlines), then this technique can allow to bet-
ter exploit the available CPU time. Moreover, buffer–less
communication simplifies the computation of the end–to–
end delay of a pipeline, by making the response time of each
stage of the pipeline independent from the workload of the
other stages (as shown in Section 3).

After presenting and discussing this interesting model of
computation (formally defining the possible behaviours of
the real–time tasks implementing the various stages of the
pipeline), a probabilistic analysis is presented, and the effec-
tiveness of the proposed approach is verified through a set
of experiments.

2. PROBLEM PRESENTATION AND BACK-

GROUND
The real–time application model considered in this paper

is composed by a pipeline Γ of M tasks {τ0, ...τM−1}, with
τ0 implementing the first stage of the pipeline. Each task τi
is a stream of jobs with Ji,j representing the jth job of task
τi (the jth activation of the ith stage of the pipeline).

The first task of the pipeline (τ0) is periodically activated
with period T (that is, a new job is released every T time
units) to sample some input data. After processing its input,
τ0 sends the processed data to τ1, activating it; in general,
each stage of the pipeline is activated when it has some data
(coming from the previous stage) to consume. The amount
of CPU time needed by job Ji,j to process its input data
and activate the next stage of the pipeline is denoted as ci,j
in this paper.

The tasks composing the pipeline are described by the
activation period T of the first stage and the Probability
Mass Function (PMF) of their execution times:

Ui(c) = Pr {ci,j = c} . (1)

In this setting, the end–to–end response time is the inter-
val of time between the release of the first job of the pipeline
(which takes place at a multiple of the period T) and the
release of the output of the same job in the last stage of the
pipeline.

The problem amounts to finding, for a given deadline D,
the probability that the end–to–end response time will be
lower than or equal toD. We call D a probabilistic deadline.

In order to compute the probability for the pipeline to
respect an end–to–end probabilistic deadline D, it is impor-
tant to properly model the mechanism used to pass data
in the pipeline (and to activate the various stages of the
pipeline). In particular, the data produced by job Ji,j (the
jth job of the ith stage of the pipeline - task τi) can either:

• be stored in a buffer (with finite or infinite size) until
task τi+1 becomes ready to consume it;

• be immediately consumed by task τi+1 if it is idle, or
discarded if τi+1 is still active when τi produces the
data.

This paper analyses the second case in which there is no
data buffering between two consecutive stages of the pipeline
(buffer–less case), assuming the knowledge of the execution
requirements of each task and the use of a reservation–based
scheduler such as the Constant Bandwidth Server (CBS) [1].
The latter should not be seen as an academic choice, since
reservation–based schedulers are now a commonplace tech-
nology distributed with main stream Linux kernels under
the name of SCHED_DEADLINE.

We will show that the probability of having a pipeline
response time smaller than the probabilistic deadline D is
quite easy to compute, but it is also important to compute
the probability of losing data along the pipeline, and we will
show how to compute such a probability.

2.1 The CBS scheduling algorithm
The CBS algorithm works by assigning dynamic schedul-

ing deadlines to the tasks and then scheduling the tasks by
applying EDF on the scheduling deadlines. More details
about how scheduling deadlines dsi associated to task τi are
generated and updated can be found in the original papers;
here, only the most important concepts are recalled:

• Each task τi scheduled by a CBS has two scheduling
parameters Qs

i (maximum budget) and T s
i (server pe-

riod);

• If tasks cannot migrate between CPU cores, and for
each core the parameters assigned to the different tasks
are such that

∑
Qs

i/T
s
i ≤ 1, then each task is guaran-

teed to receive Qs
i units of execution time within every

server period T s
i .

The latter property is of the greatest importance for prob-
abilistic analysis since it allows us to analyse the temporal
behaviour of each task in isolation, once the distribution of
the inter–arrival time between two adjacent jobs activation
is determined.

2.2 Model of computation
The model of computation is, in this context, a set of rules

to decide when a task’s job can start and when it can deliver
its results and activate a job of the next task of the pipeline.

In “traditional” real–time systems, a task delivers its out-
put data and activates a job of the next task of the pipeline
as soon as the job processing the input data terminates. In
this work, the data are not released immediately, but at a
later time defined by various possible strategies (that define
the model of computation):

• Period alignment (PA): the data are released (that
is, the next job of the next stage of the pipeline is
activated) when the next job arrives. For example,
consider the first stage of the pipeline, which is peri-
odically activated (with period T): if it is activated at
time t0 and it processes the received data in a time
smaller than T , then the next job of the second stage
is activated at time t0 + T ; if the first stage processes
the data in a time larger than T but smaller than 2T ,
than the second stage is activated at t0 + 2T , etc.;

• Greedy alignment (GA): the next job of the i+1th

stage of the pipeline is activated at the next server
period T s

i . For example, if the ith stage of the pipeline

is activated at time t0 and serves the data in a time
larger than (k − 1)T s

i and smaller than kT s
i , then the

next stage is activated at t0 + kT s
i ;

• Greedy after period alignment (GAPA): if a stage
of the pipeline receives some data and finishes to pro-
cess it before the next activation (so, no data are dropped),
then the processed data are released when the next ac-
tivation arrives (as in PA). If, on the other hand, some
new data are dropped before the current job finishes,
then the data are released at the next server period
T s
i (as in GA). For example, if the first stage (which

is periodically activated with period T) is activated at
time t0 and finishes to process the data at time t1, with
(k−1)T s

0 < t1−t0 ≤ kT s
0 , then the second stage of the

pipeline is activated at t0 +T if T > kT s
0 , otherwise it

is activated at time t0 + kT s
0 .

Notice that if ∀τi, T = n0T
s
i (with n0 ∈ N) then the task

at the ith stage of the pipeline will be activated only at times
multiple of T s

i−1 (independently from the model of compu-
tation). This rule introduces a significant simplification in
the analysis, since we can reduce the problem of stochastic
analysis of a real–time task τi served by a CPU reservation
to that of computing the probability of a job to finish in
a specified reservation period, that is, in the time interval
(r + kT s

i , r + (k + 1)T s
i), where r is the activation time of

the job (see [2] for more details).

2.2.1 An example

τ1

τ0

12 24 306 18 4236

Figure 1: Example of scheduling in a pipeline com-
posed by two tasks, with buffer–less communication,
when using the PA model of computation.

τ1

τ0

12 24 306 18 4236

Figure 2: Same example as Figure 1, but using the
GA model of computation.

τ1

τ0

12 24 306 18 4236

Figure 3: Same example as Figure 1, but using the
GAPA model of computation.

Consider a 2–stages pipeline composed of two tasks τ0
and τ1. The former is activated by a flow of input data
generated with a fixed period T = 12. The latter is activated

by the data produced by τ0. Assume that the two tasks
are scheduled with two reservations with parameters (Qs

0 =
2, T s

0 = 6) and (Qs
1 = 3, T s

1 = 6) respectively. First of all,
assume the PA model of computation, as shown in Figure 1.
At time 0, the first job of the task τ0 is released with a
computation requirement of 3 time units. Since the task is
idle, the job can start immediately and it will require two
reservation periods to finish. The PA model of computation
defers the output release to time 12. Hence, the first job of
τ1 will be activated at time 12 (when a new activation for the
task τ0 also arrives). Assume that the second activation for
the task τ0 requires 1 reservation period to finish. According
to PA, the task τ1 will be activated again at time 24 (arrival
of the next job for τ0. If task τ1 finishes to serve its first
job before time 24, the its second activation can be served
without problems. If the third activation of task τ0 (arriving
at time 24) takes more than 12/6 = 2 server periods to
complete, then the next job for τ0 will be dropped (see the
dropped activation at time 36) and the next activation for
task τ1 will be at time 48.

If the GA model of computation was used instead of PA
(see Figure 2, the second job of task τ1 would have been
activated at time 18, when τ1 is still active. Hence, GA
would have caused the drop of the second activation of τ1.
On the other hand, the third activation of τ1 would have
been at time 42 instead of 48, allowing τ1 to execute first.

Finally, using GAPA (see Figure 3) the second activation
of τ1 is delivered at time 24 (avoiding to drop a job in τ1,
while the third activation is delivered at time 42.

3. ANALYSIS
Consider now the buffer–less pipeline of M tasks τi pre-

sented in Section 2. This section analyses the real–time be-
haviour of the pipeline when the first stage uses the PA,
GA, or GAPA model of computation, while the other stage
of the pipeline use the GA model (the analysis for the other
two models of computation is similar and is not described
for the sake of simplicity).

As explained in Section 2.2.1, if τi+1 is busy when τi
produces some data, the data is lost (and the activation is
dropped). As a result of the absence of buffers, computing
the end–to–end delay for a periodic activation is quite easy,
since the amount of time to be served when a new job is
activated is always equal to the job’s execution time. To
prove this important property, it is useful to provide some
more formal definitions. In particular, as shown in [3, 4] the
amount of time vi,j to be served when a job Ji,j is activated
(also named backlog) can be computed as:

vi, j = max{0, vi, j−1 − zi,jQ
s
i}+ ci,j , (2)

where ri,j is the arrival time of job Ji,j and zi,j is the number
of server periods T s

i between the arrival of Ji,j−1 and Ji,j

(more formally, zi,j =
⌈

ri,j−ri,j−1

Ts
i

⌉
).

Based on this definition it is possible to prove the following
lemma:

Lemma 1. When considering a pipeline of tasks served by
resource reservations and without buffers between the stages
of the pipeline, the backlog of each task when a new job ar-
rives is equal to the job’s execution time: vi,j = ci,j

Proof. This can be easily proved by contradiction, as-
suming that Ji,j is not dropped and showing that vi,j 6= ci,j
contraddicts this hypothesis.

If Ji,j is not dropped (hence, it starts its execution), ac-
cording to Equation 2 vi,j 6= ci,j implies that

vi,j−1 − zi,jQ
s
i > 0 ⇒ vi,j−1 > zi,jQ

s
i .

But since zi,j =
⌈

ri,j−ri,j−1

Ts
i

⌉
, we have

vi,j−1 −

⌈
ri,j − ri,j−1

T s
i

⌉
Qs

i > 0 ⇒

⇒

⌈
ri,j − ri,j−1

T s
i

⌉
Qs

i < vi,j−1 ⇒

⇒
ri,j − ri,j−1

T s
i

<
vi,j−1

Qs
i

⇒

⇒ ri,j < ri,j−1 +
vi,j−1

Qs
i

T s
i < ri,j−1 +

⌈
vi,j−1

Qs
i

⌉
T s
i

Now, notice that
⌈

vi,j−1

Qs
i

⌉
T s
i is the response time for Ji,j−1,

hence ri,j < ri,j−1 +
⌈

vi,j−1

Qs
i

⌉
T s
i = fi,j−1 (i.e., the finishing

time of job j − 1), contradicting the hypothesis that the
activation of job Ji,j was not dropped.

Since vi,j = ci,j , the response time for a non–dropped

job Ji,j is δi,j =
⌈

vi,j
Qs

i

⌉
T s
i =

⌈
ci,j
Qs

i

⌉
T s
i , hence fi,j = ri,j +⌈

ci,j
Qs

i

⌉
T s
i (notice that this requires that τi is not busy at time

ri,j). If the GA model of computation is used, since there is

no buffering ri,j = fi−1,j , hence fi,j = fi−1,j +
⌈

ci,j
Qs

i

⌉
T s
i .

It is now possible to define c̃i,j =
⌈

ci,j
Qs

i

⌉
T s
i , writing the

finishing time of a job as

fi,j = fi−1,j + c̃i,j .

Hence, the end–to–end delay can be described as

δi,j =
M−1∑

i=0

c̃i,j . (3)

Since the execution time of a job does not depend on the
job index (Pr {ci,j = c} does not depend on j), and since
the execution times of stage i are independent from the ex-
ecution times of stage k 6= i, Pr {δi,j = d} is given by the
convolution of the PMFs U ′

z(c) = Pr {c̃z,j = cT s
i } of c̃z,j for

all the pipeline stages from 0 to i.
This result can be adapted to support the case in which

the first stage of the pipeline uses a different model (PA
or GAPA); the only requirement is that the GA model of
computation is used in all the stages of the pipeline i 6= 0.
The only modification needed is a different definition of c̃0,j

(instead of using c̃0,j =
⌈

c0,j
Qs

0

⌉
T s
0): if stage 0 uses the PA

model it is possible to define c̃0,j =
⌈

c0,j
(T/Ts

0)Qs
0

⌉
T ; if stage

0 uses GAPA, it is possible to define c̃0,j = T if c0,j ≤

(T/T s
0)Q

s
0 and c̃0,j =

⌈
c0,j
Qs

0

⌉
T s
0 if c0,j > (T/T s

0)Q
s
0.

Of course, there is a cost to be paid to achieve such a
simple computation of the response time (and such an inde-
pendence between the response times of the various stages of
the pipeline): since data can be dropped (if τi is busy when
τi−1 generates the data), it is not guaranteed that the jth

periodic activation of task τ0 (the first stage of the pipeline)
generates some output on τM−1 (the end of the pipeline).

Hence, the real–time performance of the application can-
not be described only by the distribution of the end–to–end
response times for activations that are not dropped, but the
probability to drop some periodic activation (in any of the
stages of the pipeline) must be computed too, as shown in
the following of this section.

3.1 Drop Probability for the First Stage of the
Pipeline

For the sake of simplicity, in what follows we will assume
that the same reservation period is used for all the stages of
the pipeline: ∀τi, T

s
i = T s.

In order to compute the probability to drop a job, it can
be useful to define the event Ei,j as “the jth job has been
executed in the ith stage”. Then, the probability of dropping
the jth job at the ith stage can be computed as Mi,j =
1−Pr {Ei,j}. In the following it will also be useful to define

mi =
⌈

maxj(c̃i,j)

T

⌉
.

Since in the first stage of the pipeline the jobs are period-
ically activated with period T = n0T

s, we have

M0,j =

m0−1∑

k=1

Pr {E0,j−k ∧ c̃0,j−k > kT}

=

m0−1∑

k=1

(1−M0,j−k)Pr {c̃0,j−k > kT} .

(4)

If the process c̃0,j is stationary, it is easy to show that the
probability to drop a job does not depend on the job index.
Hence Equation 4 can be rewritten as

M0,j =

m0−1∑

k=1

(1−M0,j)Pr {c̃0,j−k > kT} ,

which leads to

M0,j =

∑m0−1
k=1 Pr {c̃0,j−k > kT}

1 +
∑m0−1

k=1 Pr {c̃0,j−k > kT}
. (5)

3.2 Drop probabiity for the Generic Stage of
the Pipeline

Computing the probability to drop a job for the next
stages of the pipeline is more complex, because jobs are not
periodically activated anymore. Hence, this probability de-
pends on the probability distribution of the jobs inter–arrival
times Ti,j . More formally, Ti,j is defined as the time between
the arrivals of jobs Ji,j and Ji,j+1: Ti,j = ri,j+1−ri,j (differ-
ence between the activation time of the jth and the activa-
tion time of the (j+1)th job at stage i). Notice that using the
PA, GA or GAPA models of computation the inter-arrival
times will be multiple of the reservation period T s.

We will show later in the section how the probability
Pr {Ti,j = hT s} can be computed. Assuming it known, at
the moment, it is possible to compute the probability to drop
a job as stage i as follows. To compute the probability of
dropping the jth job at the ith stage of the pipeline, it is con-
venient to start by first assuming that the job has been cor-

rectly executed. To this end, let us define ni =
⌈

maxj(c̃i,j)

Ts

⌉
.

Similarly to (4), we have

M1,j =

n1−1∑

k=1

Pr

{
E1,j−k ∧ c̃1,j−k >

k∑

l=1

T1,j−l

}

=

m1−1∑

k=1

(1−M1,j−k)Pr

{
c̃1,j−k >

k∑

l=1

T1,j−l

}
,

(6)

that again assuming the process stationary,

M1,j =

n1−1∑

k=1

(1−M1,j)Pr

{
c̃1,j−k >

k∑

l=1

T1,j−l

}
,

that finally yields to

M1,j =

∑n1−1
k=1 Pr

{
c̃1,j−k >

∑k
l=1 T1,j−l

}

1 +
∑n1−1

k=1 Pr
{
c̃1,j−k >

∑k
l=1 T1,j−l

} . (7)

The Equation (7) is more involved than (5) presented
for the first stage because the inter–arrival times are time–
varying, while the period T is fixed. In order to compute all
the summands in (7), we first start with the case of k = 1,
that can be rewritten as

Pr {c̃1,j−1 > T1,j−1} =

n1−1∑

q1=1

Pr {c̃1,j−1 > q1T
s} ·

·Pr {T1,j−1 = q1T
s} ,

that represents all the possible situations in which the com-
putation time is greater than the available inter–arrival time
T1,j−1. For k = 2 we have,

Pr {c̃1,j−2 > T1,j−1 + T1,j−2} =

n1−2∑

q1=1

Pr {T1,j−2 = q1T
s} ·

·

n1−1∑

q2=q1+1

Pr {T1,j−1 = (q2 − q1)T
s}Pr {c̃1,j−2 > q2T

s} ,

where all the possible combinations of two inter–arrival
times for two consecutive jobs T1,j−1 and T1,j−2 are con-
sidered. It then follows that, for the generic case comprising
k inter–arrival times

Pr

{
c̃1,j−k >

k∑

l=1

T1,j−l

}
=

n1−k∑

q1=1

Pr
{
T1,j−k = q1T

s}
·

·

n1−(k−1)∑

q2=q1+1

Pr
{
T1,j−k+1 = (q2 − q1)T

s}
·

·

n1−(k−2)∑

q3=q2+1

Pr
{
T1,j−k+2 = (q3 − q2)T

s}
· · ·

· · ·

n1−1∑

qk=qk−1+1

Pr
{
T1,j−1 = (qk − qk−1)T

s}
Pr
{
c̃1,j−k > qkT

s}
,

(8)

It is worthwhile to note that the combination of the sum-
mations of the k inter–arrival periods can be radically sim-
plified making use of the convolutions. Indeed, by defining
Conv (i, q, k, j − k) as the q–th component of the discrete
convolution of k inter–arrival PMFs starting from j − k at
the i–th stage, we have that

Pr

{
k∑

l=1

T1,j−l = qT s

}
= Conv (1, q, k − 1, j − k) .

As a consequence, (8) boils down to

Pr

{
c̃1,j−k >

k∑

l=1

T1,j−l

}
=

n1−1∑

q=1

Conv (1, q, k − 1, j − k)Pr {c̃1,j−k > qT s} .

(9)

At this point, the only missing piece is the computation of
the job inter–arrival times Pr {T1,j−1 = hT s} for the various
stages of the pipeline.

3.2.1 Job Inter–Arrival Times: Second Stage of the
Pipeline

Before computing the probability distribution of job inter–
arrival times at a generic stage i, let us first consider the
second stage (i = 1). Depending on the computation model
adopted at the first stage, the second stage behaviour changes
accordingly. In this paper we analyse the three different
models presented in Section 2: PA, GA and GAPA.

According to the chosen policy, we have:

• PA: For h = wn0, w = 1, . . . ,m0, we have:

Pr
{
T1,j = hT

s} = Pr
{
(w − 1)n0T

s
< c̃0,j+1 ≤ hT

s}
,

whereas for h 6= wn0 the probability is zero;

• GA: For h = 1, . . . , n0m0:

Pr {T1,j = hT s} =
h∑

k=max(1,h−n0+1)

Pr {c̃0,j+1 = kT s} ·

·

m0∑

l=1

Pr {c̃0,j = (l − (h− k))n0T
s} ;

• GAPA: To compute the inter–arrival times distribu-
tion for this model of computation, it is necessary to
consider three different cases:

1. If h < n0, Pr {T1,j = hT s} = 0. For h = n0, it
is:

Pr {T1,j = hT s} = Pr {c̃0,j+1 ≤ n0T
s}Γ,

where

Γ = Pr {c̃0,j ≤ n0T
s}+

m0∑

l=2

Pr {c̃0,j = ln0T
s} .

2. If n0 < h < 2n0, one gets

Pr
{
T1,j = hT

s} = Pr
{
c̃0,j+1 = hT

s}Γ+

Pr
{
c̃0,j+1 ≤ n0T

s}
·

·

(
m0∑

l=2

Pr
{
c̃0,j = [(l + 1)n0 − h]T

s}
)

+

h−n0−1∑

k=1

Pr
{
c̃0,j+1 = (h − k)T s}

·

·

m0∑

l=2

Pr
{
c̃0,j = [(l + 1)n0 − (h − k))T s}

.

3. Finally, for h ≥ 2n0, we have

Pr
{
T1,j = hT

s}
= Pr

{
c̃0,j+1 = hT

s}
Γ+

h̃∑

k=1

Pr
{
c̃0,j+1 = (h − k)T s}

·

·

(
m0∑

l=2

Pr
{
c̃0,j = (ln0 − k)T s}

)
,

where

h̃ = min

[
h−

(⌊
h

n0

⌋
− 1

)
n0 − 1, n0 − 1

]
.

3.2.2 Job Inter–Arrival Times: the Generic Stage of
the Pipeline

For the generic ith stage, the inter–arrival times depend
on the model of computation used by the i− 1th stage: PA,
GA or GAPA; for the sake of simplicity, this paper presents
the analysis only for the GA model, since the analysis for
the other two models of computation is similar. As it is clear
from the previous analysis, the key quantity to be computed
starting from the second stage on is the probability of having
a certain job inter–arrival time. Indeed, once the probabili-
ties of the Ti,j are available, we can directly apply (6), (7)
and (9) to derive the probability of dropping a job. Before
going into the details, we define Ii as the maximum number
of server periods T s for the inter–arrival times for the i–th
stage.

Considering the GA model of computation, the probabil-
ity of Ti,j = hT s can be computed by looking at two con-
secutive jobs executing on stage i−1 and considering all the
possible combinations of inter–arrivals and jobs execution
times so that the distance between the end of the two jobs
is hT s:

Pr
{
Ti,j = hT

s} =

Ii−1∑

q1=1

Conv (i− 1, q1, 1, j)

q1∑

l=1

Pr
{
c̃i−1,j = lT

s}
·

· Pr
{
c̃i−1,j+1 = (h− q1 + l)T s}+

Ii−1∑

q1=1

Conv (i− 1, q1, 1, j)

Ii−1+q1∑

q2=q1+1

Pr
{
Ti−1,j+1 = (q2 − q1)T

s}
·

·

q2∑

l=q1+1

Pr
{
c̃i−1,j = lT

s}
Pr
{
c̃i−1,j+2 = (h − q2 + l)T s}+

2Ii−1∑

q1=2

Conv (i− 1, q1, 2, j)

Ii−1+q1∑

q2=q1+1

Pr
{
Ti−1,j+2 = (q2 − q1)T

s}
·

·

q2∑

l=q1+1

Pr
{
c̃i−1,j = lT

s}
Pr
{
c̃i−1,j+3 = (h − q2 + l)T s} + · · ·+

kIi−1∑

q1=k

Conv (i− 1, q1, k, j)

Ii−1+q1∑

q2=q1+1

Pr
{
Ti−1,j+k = (q2 − q1)T

s}
·

·

q2∑

l=q1+1

Pr
{
c̃i−1,j = lT

s}
Pr
{
c̃i−1,j+k+1 = (h − q2 + l)T s} + . . .

where the summation is performed at most Ii times. Since
Ii is not known upfront, an upper bound is given by Ii =

Ii−1 −
⌈

minj(c̃i−1,j)

Ts

⌉
+ ni−1. It is worthwhile to note that

this summation very much recalls (9).
Finally, notice that the probability of dropping the job j

at any of the stage up to the stage k is given by the sum of
the conditional probabilities, i.e.,

M≤k,j = M0,j + (1 − M0,j)M1,j + (1 − M0,j)(1 − M1,j)M2,j+

+ · · · + (1 − M0,j) · · · (1 − Mk−1,j)Mk,j =

=

k∑

i=1

Mi,j +

k∑

i=0

(−1)
i

i∏

q=0

Mq,j .

4. EXPERIMENTS
In order to show the practical applicability of the pre-

sented approach, we considered a pipeline of four tasks de-
rived by a computer vision application. The application is
used on a mobile robot to identify the boundaries of a lane
and estimate the position of the robot by using a web–cam
mounted on the chassis of the robot.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5000 10000 15000 20000

Stage 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

Stage 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

Stage 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5000 10000 15000 20000

Stage 3

Figure 4: Cumulative Distribution Functions
(CDFs) of the execution times for the 4 stages of
the pipeline.

The first stage of the pipeline is activated with period T =
8 ms, and the four stages have execution times distributed
as in Figure 4. The WCETs are 20.385 ms (for stage 0),
13.557 ms (for stage 1), 9.310 ms (for stage 2), and 51.695 ms
(for stage 3); the minimum execution times are 1.713 ms
(for stage 0), 0.870 ms (for stage 1), 0.840 ms (for stage
2), and 0.463 ms (for stage 3); the average execution times
are 2.158 ms (for stage 0), 1.023 ms (for stage 1), 1.018 ms
(for stage 2), and 1.954 ms (for stage 3). The execution
times distributions have been measured by instrumenting a
real implementation of the application running on a mobile
robot controlled by a WandBoard Quad1.

The tasks implementing the four stages of the pipeline are
scheduled using the SCHED_DEADLINE policy on a 4.1.5 Linux
kernel. Since using a too small server period is not feasible
in practice, the server period has been set to T s = 8 ms
(equal to the stage 0 period) for all of the four tasks.

As a first experiment, the pipeline has been analysed as-
signing Qs

0 = 2 ms, Qs
1 = 1 ms, Qs

2 = 1 ms, and Qs
3 = 1.5 ms.

Notice that the system is heavily overloaded, since the max-
imum budget of each task has been set to a value smaller
than the average execution time of the task. If the pipeline

1http://www.wandboard.org

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000 300000

Time (us)

End to end delay of non dropped activations
End to end delay of all activations

Figure 5: CDF of the end–to–end delay for a
pipeline with 4 stages. The execution times are dis-
tributed as in Figure 4; the server period is equal to
the period of stage 0 and is T s = 8 ms; the maximum
budgets are Qs

0 = 2 ms, Qs
1 = Qs

2 = 1 ms Qs
3 = 1.5 ms.

was implemented using queues between the various stages,
the end–to–end delay of the pipeline would have been un-
bounded; however, using a buffer–less communication model
allows to have a bounded end–to–end delay (at the cost of
dropping some activations). Figure 5 shows the CDF of the
end–to–end delay experienced when using the GA model of
computation. The probability to drop an activation has been
computed as 0.606, hence the figure also plots the CDF of
the end–to–end delay for all the activations of stage 0. This
second curve does not arrive to 1, but it is scaled up to
1− 0.606 = 0.394, because the probability for an activation
not to be dropped is only 0.394. Notice that these results
have been analytically computed as shown in Section 3, but
the system has also been simulated to verify that the simu-
lative results match the analytical ones.

By looking at Figure 5 it is possible to appreciate the fact
that even if the system is overloaded the data fed in the
pipeline have almost 40% probability of being processed in
less than 100 ms. As previously noticed, this result can-
not be obtained if the pipeline is not allowed to drop some
data/activations.

Of course, to achieve better performance the reservations
have to be dimensioned in a more reasonable way (setting
Qs

i to a value larger than the average computation time of
stage i). To show this, Figure 6 plots the probability to
drop an activation as a function of Qs

2 and Qs
3, after setting

Qs
1 = 2.5 ms and Qs

2 = 2 ms. By looking at the figure it is
possible to notice that increasing Qs

2 from 0.5 ms to 1.5 ms
greatly decreases the probability to drop an activation, but
increasing it to more than 2.5 ms only slightly improves the
performance. This effect is less visible on Qs

3, but it can be
noticed that for values larger than 5 ms the variations in the
probability to drop an activation are small enough. As an
example, the probability to drop an activation with Qs

2 =
1.5 ms and Qs

3 = 5 ms is 0.163; increasing Qs
2 to 4.5 ms the

probability decreases to 0.140 (further increasing Qs
2 only

decreases this value for less than 0.0001), and increasing Q3

to 6.5 ms the probability decreases to 0.113.
Focusing on one point of the curve, Figure 7 plots the

 0 1000 2000 3000 4000 5000 6000 7000 8000
Q3 0

 1000
 2000

 3000
 4000

 5000
 6000

 7000

Q2

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Figure 6: Probability to drop an activation for a
pipeline with 4 stages, as a function of Qs

2 and Qs
3

(after fixing Qs
0 = 2.5 ms and Qs

1 = 2 ms). The exe-
cution times are distributed as in Figure 4.

CDF of the end–to–end response times for Qs
2 = 4.5 ms and

Qs
3 = 6.5 ms (as said, the probability to drop an activation,

with these parameters, is 0.113).

5. CONCLUSIONS
In this paper we have presented a stochastic analysis for

buffer–less pipelines of tasks scheduled through a reservation–
based scheduler. Different models of computation (PA, GA,
GAPA) have been introduced, and the GA model has been
formally analysed. The correspondence between analytical
results and the model have been verified through simula-
tion, and some examples have been presented to show the
effectiveness and usefulness of the presented analysis.

In the future work, we plan to extend the analysis to differ-
ent types of topologies and communication semantics, and to
compare the real–time performance of the buffer–less model
presented in this paper with more traditional communica-
tion models.

6. ACKNOWLEDGEMENTS
The research leading to the results presented in the paper

has been partially supported by the European Commission
H2020 programme, through the ACANTO Research and In-
novation Action, Grant number 643644.

7. REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings
of the IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[2] L. Abeni and G. Buttazzo. Qos guarantee using
probabilistic dealines. In Proceedings of the IEEE
Euromicro Conference on Real-Time Systems, York,
England, June 1999.

[3] L. Abeni and G. Buttazzo. Stochastic analysis of a
reservation-based system. In Proceedings of the 15th
International Parallel and Distributed Processing
Symposium., San Francisco, California, April 2001.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

Time (us)

End to end delay of non dropped activations
End to end delay of all activations

Figure 7: CDF of the end–to–end delay for a
pipeline with 4 stages. The execution times are dis-
tributed as in Figure 4; the server period is equal to
the period of stage 0 and is T s = 8 ms; the maximum
budgets are Qs

0 = 2.5 ms, Qs
1 = 2 ms, Qs

2 = 4.5 ms, and
Qs

3 = 6.5 ms.

[4] L. Abeni, N. Manica, and L. Palopoli. Efficient and
robust probabilistic guarantees for real-time tasks.
Journal of Systems and Software, 85(5):1147 – 1156,
2012.

[5] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for
probabilistic worst-case execution time analysis of
real-time systems. REPORT-UNIVERSITY OF
YORK DEPARTMENT OF COMPUTER SCIENCE
YCS, 2003.

[6] T. Cucinotta and L. Palopoli. Qos control for pipelines
of tasks using multiple resources. Computers, IEEE
Transactions on, 59(3):416–430, March 2010.

[7] L. Cucu and E. Tovar. A framework for the response
time analysis of fixed-priority tasks with stochastic
inter-arrival times. ACM SIGBED Review - Special
issue: The work-in-progress (WIP) session of the
RTSS 2005, 3(1):7–12, January 2006.

[8] J. L. Diaz, D. F. Garcia, K. Kim, C. G. Lee,
L. Lo Bello, J. M. López, S. L. Min, and O. Mirabella.
Stochastic analysis of periodic real-time systems. In
Real-Time Systems Symposium, 2002. RTSS 2002.
23rd IEEE, pages 289–300. IEEE, 2002.

[9] J. L. Diaz, J. M. López, M. Garcia, A. M. Campos,
K. Kim, and L. Lo Bello. Pessimism in the stochastic
analysis of real-time systems: Concept and
applications. In Real-Time Systems Symposium, 2004.
Proceedings. 25th IEEE International, pages 197–207.
IEEE, 2004.

[10] D. Fontanelli, L. Palopoli, and L. Abeni. The
Continuous Stream Model of Computation for
Real–Time Control. In Proceedings of the IEEE
Real-Time Systems Symposium, Vancouver, Canada,
4-6 Dec. 2013. IEEE.

[11] M. K. Gardner and J. Liu. Analyzing stochastic
fixed-priority real-time systems. In Proceedings of the
5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems

(TACAS99), pages 44–58. Springer, March 1999.

[12] P. Jayachandran and T. Abdelzaher. A delay
composition theorem for real-time pipelines. In
Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), pages 29–38. IEEE,
2007.

[13] P. Jayachandran and T. Abdelzaher. Delay
composition algebra: A reduction-based schedulability
algebra for distributed real-time systems. In
Proceedings of the Real-Time Systems Symposium
(RTSS), pages 259–269. IEEE, 2008.

[14] P. Jayachandran and T. Abdelzaher. Delay
composition in preemptive and non-preemptive
real-time pipelines. Real-Time Systems, 40(3):290–320,
2008.

[15] D.-I. Kang, R. Gerber, and M. Sakena.
Performance-based design of distributed real-time
systems. In Proceedings of the IEEE Real-Time
Technology and Applications Symposium, pages 2–13,
June 1997.

[16] D.-I. Kang, R. Gerber, and M. Saksena. Parametric
design synthesis of distributed embedded systems.
IEEE Trans. Computers, 49(11):1155–1169, 2000.

[17] K. Kim, J. L. Diaz, L. Lo Bello, J. M. López, C. G.
Lee, and S. L. Min. An exact stochastic analysis of
priority-driven periodic real-time systems and its
approximations. IEEE Transactions on Computers,
54(11):1460–1466, 2005.

[18] N. Manica, L. Palopoli, and L. Abeni. Numerically
efficient probabilistic guarantees for resource
reservations. In Emerging Technologies Factory
Automation (ETFA), 2012 IEEE 17th Conference on,
pages 1–8, Sept 2012.

[19] D. Maxim and L. Cucu-Grosjean. Response time
analysis for fixed-priority tasks with multiple
probabilistic parameters. In Proceedings of the IEEE
Real-Time Systems Symposium, Vancouver, British
Columbia, Canada, December 2013.

[20] A. Mills and J. Anderson. A stochastic framework for
multiprocessor soft real-time scheduling. In
Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium,
pages 311–320. IEEE, April 2010.

[21] L. Palopoli, D. Fontanelli, L. Abeni, and
B. Villalba Frias. An analytical solution for
probabilistic guarantees of reservation based soft
real–time systems. Parallel and Distributed Systems,
IEEE Transactions on, PP(99):1–1, 2015.

[22] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni.
An analytical bound for probabilistic deadlines. In
Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on, pages 179–188. IEEE, 2012.

