

Health,	 demographic	 change	 and	 wellbeing	
Personalising	 health	 and	 care:	 Advancing	 active	 and	 healthy	 ageing	

H2020-PHC-19-2014	
Research	 and	 Innovation	 Action	

Deliverable	 7.1.1	

Deliverable	 Title

Deliverable	 due	 date:	 11.2015 Actual	 submission	 date:	 day.month.year	

Start	 date	 of	 project:	 February	 1,	 2015	 Duration:	 42	 months	

Lead	 beneficiary	 for	 this	 deliverable:	 TI	 Revision:	 1.2	

Authors:Gian	 Piero	 Fici	 (TI),	 Luigi	 Palopoli	 (UNITN),	 Carlos	 Rivera	 (ENVT),	 Ivo	 Ramos	 (ATOS)	

Internal	 reviewer:	 NA	

The	 research	 leading	 to	 these	 results	 has	 received	 funding	 from	 the	 European	 Union's	 H2020	 Research	
and	 Innovation	 Programme	 -	 Societal	 Challenge	 1	 (DG	 CONNECT/H)	 under	 grant	 agreement	 n°643644	

Dissemination	 Level	

PU	 Public	 	

CO	 Confidential,	 only	 for	 members	 of	 the	 consortium	 (including	 the	 Commission	 Services)	 X	

The contents of this deliverable reflect only the authors’ views and the European Union is not liable for any
use that may be made of the information contained therein.

Ref. Ares(2015)6068541 - 31/12/2015

ACANTO	

2

Contents	

EXECUTIVE	 SUMMARY ... 3	

CHAPTER	 1	 -‐	 THE	 ACANTO	 ARCHITECTURE.. 4	

CHAPTER	 2-‐	 CONCEPTION	 OF	 SOCIAL	 ACTIVITIES.. 6	

CHAPTER	 3	 -‐	 EXECUTION	 OF	 SOCIAL	 ACTIVITIES.. 10	

CHAPTER	 4	 -‐	 PERCEPTION	 OF	 USERS	 AND	 ENVIRONMENT .. 26	

BIBLIOGRAPHY... 27	

3

Executive	 Summary	

	
This document contains the definition of APIs defined between the different software components
of the ACANTO architecture.

Since the accurate definition of the APIs follows the implementation of the overall system the
present version of this deliverable is not to be considered the final description of the data
structures and of the interactions between modules composing the ACANTO architecture. On the
contrary, the document contains our initial design choices on the API, which are stated in this
early phase of the project in order to facilitate the subsequent integration steps. For this reason,
the ideas expressed in the document are subject to constant revision and adaptation as required
by the implementation and integration activities.
In its central part, the document describes the software interfaces for the execution of social
activities. Since low fidelity prototypes have already been developed at this stage to the purpose
of facilitating requirement collection, we regard the design choices expressed therein as quite
stable.
The document utilizes the UML modeling language whenever possible and assumes a C++
binding. An overarching choice of our implementation is the use of template meta-programming
as a means to obtain correct by construction code. Therefore, we shall frequently refer to
template classes, for which standard UML support is limited. The document will provide high-level
description for the methods, with the primary goal of describing the semantics, and the
interactions between the classes rather than their exact syntax. For implementation purposes,
this document will go hand-in-hand with the Doxygen documentation of the classes and of the
functions, which can be found in the project git repositories and is subject to continuous revision.

In the first part of the document the ACANTO architecture is described. Then the interfaces
between all the components are defined. In particular the document is divided following the main
subsystems of the ACANTO architecture, i.e.: Conception of social activities, Execution of social
activities, Perception of user and environment. For each of these subsystems the data structures
used to store and exchange information and the class diagrams of the implementation are
described following the needs of the specific module addressed.

ACANTO	

4

Chapter	 1	 -	 The	 ACANTO	 architecture	
	
The following figure shows the main functional blocks of ACANTO and illustrates their
interconnection.

A number of subsystems are identified:

• Conception of social activities
• Execution of social activities
• Perception of user and environment

Figure 1: The ACANTO overall architecture

The first subsystem that we identify in the figure is responsible for the Conception of social
activities. Within this subsystem, the Profiler, collects relevant information on the user from
different sources and consolidates it with the past observations to create and update the profile.
The Activity Generator decides recommendations on possible activities. This is done
accounting for the preferences of other people belonging to the circles of the user, for the state of
the user (e.g., the level of supplies in the pantry) and for the opportunities offered by the
environment (e.g., special events planned for the day, discounts offered by a mall etc.). The
Activity Monitor monitors the progress of an activity (e.g., the number of planned locations
that have been visited) and decides changes to the activity in case of significant deviations (e.g.,
the user is too tired to proceed) or of unpredicted events (e.g., one of the locations is not
available or is overcrowded). The Activity Evaluator comes into play at the end of an
activity. It assesses the therapeutic efficacy of the activity, the user’s satisfaction, as judged from
her/his physical and emotional state observed during the different phases, and the quality of
social interactions within the circle (if the activity involves more than one user). This information is
used to refine the profile and evaluate the possibility of new circles.

The second subsystem is in charge of the Execution of social activities. One of its
components, the Activity Planner, decides a plan to execute the activity accounting for the
state of the environment observed by remote sensors and by devices carried by other users
connected to the system. The plan specifies a schedule with places to visit, tasks to perform and

5

comfort properties that need to be preserved all the while. The Reactive Planner exploits
information collected by the sensing system and integrated by the execution monitor, to refine the
plan and turn it into an executable sequence of actions. In particular, it produces a motion plan
that: 1. secures a correct execution of the physical exercise planned for each user, 2. respects
the social rules, 3. guarantees sufficient safety levels and keeps the user’s stress in check. When
the activity is carried out in group, the plan has to guarantee a proper coordination of the different
elements and account for the social dynamics and roles within the group. The execution of the
plan is supported by a multi-modal Human Machine Interface (HMI), which makes use of
displays, haptic devices (wearable or embedded in the grips of the FriWalk) and robotic
mechanical guidance. These devices operate in closed loop, using the information collected in
real–time from the user and from the environment and integrated by the execution monitor. When
anomalies that could impair the execution of the plan are detected (e.g., a group of bystanders on
the path, or a wet floor sign), the Reactive Planner explores possible minimal deviations to
the plan that will nevertheless respect the high level objectives (set by the Activity Planner),
and preserve the required properties. If this is possible, the adjustment is implemented;
otherwise, an exception is signaled to the Activity Planner, which tries to produce a new
high level plan (e.g., re-shuffling the execution of the activities). If the changes in the environment
or in state of user the show no possibility of solution, the exception has to be propagated to the
Activity Generator, which changes the planned activity.

The third subsystem is in charge of Perception of users and environment. It combines
algorithms for sensing and for extracting semantic information from the sensed data. The sources
of information are manifold and are partially implemented onboard the FriWalk and worn by the
user, and partially in the environment. Onboard and wearable sensors are used to observe the
user and to gauge her/his physical and emotional state. They are also used to detect the
environment in the proximity of the user (short range sensors). Sensors in the environment allow
the system to extend its perception range. Possible applications are to identify overcrowded
areas and to pinpoint the position of security staff and assistants in advance. The planned path
can be chosen in order to minimize the stress of sharing busy spaces and to enhance the user’s
sense of security by remaining within sight of personnel able to offer prompt assistance if
required.

Chapter	 2-	 Conception	 of	 social	 activities	
	
In this chapter the two main data structure of the Conception of social activities subsystem are
described: Profile and Activity.
These data structures are created within this subsystem and are used for the internal
communication between modules within this same subsystem and for the external
communication between this subsystem and the Execution of social activities subsystem.

2.1 Profile	
	

The Profile data structure describes the profile of the user of the ACANTO system. It is
composed of several subclasses. Three dots mean that the size is not fixed and can be
extended. Sets are similar to Enums but they can contain more than one identifier
simultaneously. Also these identifiers may be classes themselves. The following is not written
using a strictly formal language but it is more of a pseudo-code definition:

Class name Class Description
Person String name;

Date date_of_birth;
String e_mail;

Characteristic Int height;
Int weight;
Enum { married,
 single,
 divorced,
 widow } marital_status;

Ability Set < Goodhealth,
 Balance_problems,
 Mobility_problems,>

Where....

Set Mobility_problems <Arthritis, ...>;

Interest Set <Sports,
 Cooking,
 Gardening, ...>

Activity Activity* activities; (array of Activity, see
below)
Time* time_on_activity; (array of Time)

7

Education Set < None,
 High_school,
 Community_college,
 Undergraduate_degree,
 PHd > degree;
Set < Spanish,
 English,
 Italian,
 Greek,
 German,
 Esperanto, ... > languages;

Profession Set < Doctor,
 Policeman,
 Firefighter,
 Bureaucrat,
 Bicycle_messenger, ...>;

Living Conditions Set < Public_transport_available,
 Private_transport_available,
 Stairs_at_home, ...>;

Contact Other persons Person* (array of Person class)

Preference Set < Cats,
 Classical_music,
 Blue_color, ...> likes;
Set < Cats,
 Classical_music,
 Blue_color, ...> dislikes;

Social networks information Set < Struct <name, url>, ... >;
Constrains Set <Barriers, ...> barriers_to_mobility;

Set <Walking_frame,
 Walking_sticks,
 Stair_lift, ...> mobility_aids;

Health prescriptions Set <Walk, SitUps, ...>;

Where for example Walk is defined as:

Struct Walk { Int distance,
 Time min_time,
 ... };

2.2 Activity	
	

The Activity data structure describes the actions the user of the ACANTO system has to perform
and the targets he or she has to achieve.

There are three types of activities:

• Rehabilitation activities
Two sub-categories:

o Controlled environment (e.g., Hospital, Rehabilitation Center): specific set of
exercises supervised by the medical professionals

ACANTO	

8

o Outside the Hospital: walk x meters per day, which can also be made at the
same time that the user visits a museum or a shopping mall

• Equipped indoor environments
Examples:

o go to the museum
o shopping tour

• Outdoor activities
Examples:

o meet friends
o walk in the park

The activities are created by the module Activity Generator, and their generation is
accomplished accounting for the preferences of other people belonging to the circles of the user,
for the state of the user (e.g., the level of supplies in the pantry) and for the opportunities offered
by the environment (e.g., special events planned for the day, discounts offered by a mall etc.)
While the attributes of the Activity are initially provided by the user and integrated by care-givers
and relatives, they are continuously and automatically updated using the harvested information
from the Activity Evaluator, which comes into play at the end of an activity. It assesses the
therapeutic efficacy of the activity, the user’s satisfaction, as judged from her/his physical and
emotional state observed during the different phases, and the quality of social interactions within
the circle (if the activity involves more than one user). This information is used to refine the profile
and evaluate the possibility of new circles.

The Acvitiy data structure is composed of several subclasses. Three dots mean that the size is
not fixed and can be extended. Sets are similar to Enums but they can contain more than one
identifier simultaneously. Also these identifiers may be classes themselves. The following is not
written using a strictly formal language but it is more of a pseudo-code definition:

Class name Class Description
Person String name;

Date date_of_birth;
String e_mail;

Characteristic Int height;
Int weight;
Enum { married,
 single,
 divorced,
 widow } marital_status;

Interest Set <Sports,
 Cooking,
 Gardening, ...>

Interests of people belonging to the
circles of the user

Set <Sports,
 Cooking,
 Gardening, ...>

9

Education Set < None,
 High_school,
 Community_college,
 Undergraduate_degree,
 PHd > degree;
Set < Spanish,
 English,
 Italian,
 Greek,
 German,
 Esperanto, ... > languages;

Profession Set < Doctor,
 Policeman,
 Firefighter,
 Bureaucrat,
 Bicycle_messenger, ...>;

Living Conditions Set < Public_transport_available,
 Private_transport_available,
 Stairs_at_home, ...>;

Contact Other persons Person* (array of Person class)

Preference Set < Cats,
 Classical_music,
 Blue_color, ...> likes;
Set < Cats,
 Classical_music,
 Blue_color, ...> dislikes;

Social networks information Set < Struct <name, url>, ... >;
Constrains Set <Barriers, ...> barriers_to_mobility;

Set <Walking_frame,
 Walking_sticks,
 Stair_lift, ...> mobility_aids;

Health prescriptions Set <Walk, SitUps, ...>;

Where for example Walk is defined as:

Struct Walk { Int distance,
 Time min_time,
 ... };

	
Chapter	 3	 -	 Execution	 of	 social	 activities	
	
In this chapter the modules and the internal interfaces of the Execution of social activities
subsystem are described.

3.1 Activity	 Planner	
	

The activity planner is a module that generates a sequence of paths to implement an activity.

In general, the Activity Planner decides the path to follow (given a set of high level constraints
and goals). For the specific rehab application, we could also have a direct generation of a path
from a caregiver using a specific tool (e.g., an editor).

Figure 1: The Activity Planner components

The meaning of the different blocks is as follows:

• User Profile: contains all the information concerning a user. It is compounded of
a “medical” part (which is strictly confidential) and a “social” part, which derives
from previous observations and from the participation to the social network

• Activity Generator: is a module that produces a recommendation on an activity
to do. For the clinical scenarios the decision on the activity can be directly made
by the caregiver.

• Constraints: encapsulate all the preferences of the user and other information
deriving from the specific scenario (e.g., opening hours of an exhibition)

• Social Goals: this is a provisional name to denote the particular goals of the
activity (e.g., buying shoes, or visiting renaissance exhibition)

• Medical Goals: specify the rehab or prevention objectives related to an activity
(e.g., the user has to walk for half an hour at 1.2 m/s average speed).

• Monitoring Requirements: contains all the things needed to be observed and
reported on the execution of the activity (e.g., duration, fulfilment of the goals,
emotional state throughout the activity, etc.).

• Activity Planner: generates an executable plan for the activity (as specified
below). All the input information that the planner receives are specified in a

11

formal language to be defined. In our first iteration we will adapt DALi’s LT
planner for this.

The specification language to express an activity, along with user profile, constraints, goals and
requirements is covered in the deliverables produced by WP2 (i.e., D2.3 for the preliminary
version, and D2.4 for the final one).

3.2 Activity	 Execution	
The specific representation of a plan is going to be finally specified in WP2 (D2.5 and D2.6). In
the present document we offer a very high level view on its required content, as it resulted from
the discussions internal to the consortium during the first year of activity of the project.
As documented in the scheme below, an Activity Plan is a sequence of tasks. Each task is
associated with a Path, a set of guidance algorithms that have to be used for its execution and
the specification of the user’s preferences (which could be different for each task).

Figure 2: The activity Execution Components

A path is a sequence of waypoints, each one characterised by a couple of coordinates and by a
reference time (which is the planned time to reach the waypoint).

The execution of an activity plan is orchestrated by the Activity Execution Engine, which reads
the tasks in sequence and hands over the execution of each task to all the guidance algorithms
active for the task. The Path is also given to the Reactive Planner, along with the user’s
preferences. As soon as a violation of the preferences is detected, the planner computes a new
path and notifies the Engine.

3.3 Activity	 Execution:	 API	 specification	
In the following sections we report and explain the class diagrams of the main components used
for the activity execution.

3.3.1 Activity	 Plan	

ACANTO	

12

The first component that we describe in some detail is the ActivityPlan, which is used for the
execution of any new activity.
The Class diagram of the activity plan is depicted in Figure 4.
The main components that we identify are the following:

1. AcantoTime is a template class, with the time granularity as parameter (which is
an enumerated type). The use of a template of this type allows us to identify
unambiguously the unit that we use for time measurements and avoid possible
errors during the compilation phase. Possible values for the granularity are
milliseconds, microseconds, nanoseconds.

2. Path: a path is a sequence of WayPoint. Each WayPoint is associated with its x
and y coordinates, its curvature and its reference time (i.e., the time where the
point is supposedly reached). The Path is a parametric class, with the Smoother
being its template parameter. The idea is that a Path is specified through a
relatively small number of points. The smoother is then used to generate a smooth
Path that is executable (by a GuidanceAlgorithm). The operations associated with
the Path are:
• addPoint: inserts a point in the path used by the Path creator to insert a new

way point or by the ReactivePlanner to insert a new point for a detour.
• removePoint: used by the ReactivePlanner to change the shape of a path in

response to a perceived violation of the constraints encoded in the
UserPreference.

• getClosestPoint: called by the guidance algorithm to find the closest element
of the path that it is following.

3. UserPreference: is a class encoding the preferences related to the specific Task
underway. Such preferences are related to the individual preferences (e.g.,
physical limitations, requirements to avoid overcrowded areas) and to the group
preferences (e.g., preferred motion patterns for the group). All of these are the
outcomes of WP2. It is worth noting preferences are already considered when
planning an Activity (e.g., to decide which places to visit). In this case, they are
accounted for by the ReactivePlanner to decide if the Task’s goal can be met or if
a change is required.

4. GuidanceIndex: is an enumerated class that lists possible values for the
GuidanceAlgorithm.

5. Task is a class composed of a Path, an instance of UserPreference and of a set of
GuidanceIndex. The rationale is that in each task one ore more guidance solutions
can be applied. For instance it is possible to apply MechanicalFrontWheel,
Visual, and Haptic at the same time.

13

Figure 3: Class Diagram of the activity plan

3.3.2 ActivityExecutionEngine:	 high	 level	 view	

At the heart of any execution are three classes: the ActivityExecutionEngine, the ReactivePlanner
and the GuidanceAlgorithm. The class diagram in Figure 5 describes these classes and their
relations.
The ActivityExecutionEngine has the following methods:

• setActivityPlan: used to initiate a new activity linking the
ActivityExecutionEngine with a plan that needs to be executed.

• start: used to start the execution of an activity.
• stop: used to halt the execution of an activity.
• getActivityState: it takes a snapshot of the current state in the execution of an

activity
• taskCompleted: it is used to notify to an application that a task has been

completed.
• taskAborted: it is used to notify that the execution of a plan is no longer possible

within the constraints encoded within the UserPreference.
The ActivityObserver is an abstract class, which is the root of a hierarchy to define different
observers. An observer is used to keep track of all relevant events related to an activity.
Observers have to provide a concrete implementation for the method:

• notify: used by the observed entity (in this case the ActivityExecutionEngine)
whenever a relevant event occurs. In response to a notify call the observer
samples the state of the observed entity and notes the event (e.g., it is possible to
define an observer to measure the average duration of a task, the changes of mood
of the assisted person, etc.).

GuidanceAlgorithm: is the root of a hierarchy of classes implementing the guidance algorithms.
GuidanceAlgorithm is an active class (meaning that a thread is associated with it that executes all
its mandated operations). Possible specialisation are MechanicalFrontWheels,
MechanicalBackWheels, HapticGuidance. The class is a template of the Period and of its internal
state. Every different specialisation requires that the internal state be specialised to a specific
value (dependent on the type of state the algorithm manipulates). Each guidance solution in one-
to-one correspondence with a guidance index. The algorithm exploits one or more instances of
the Sensor class to receive the data from the plant and one ore more instances of the Actuator
class to send the data to the actuator. The idea is that once every Period the GuidanceAlgorithm
is executed: it sample the sensors, decides the control action and generates and action request
for the actuators required by the specific algorithm. A GuidanceAlgorithm can optionally be linked
to an observer (more precisely a PathObserver), which is invoked through the notify method
whenever a new event occurs (e.g., the awakening of the thread executing the guidance
algorithm). The PathObserver is a template class of PathExecutionState and it can be used to
derive statistics on the execution of the Path (e.g., a simple collection of the walker position and
of the physical parameter upon each sampling time which can be analysed after the execution to

ACANTO	

14

infer such parameters as the average or the peak velocity). The specific algorithm implemented
will be developed in WP6. Relevant methods of GuidanceAlgorithm are

• activateGuidance: used to pass a new path to be executed to the guidance
algorithm;

• start: used to initiate a new Path;
• stop: used to halt the execution of a Path;
• waitForNextActivation: suspends the execution of the task animating the

object for an interval of time given by the Period (which is a template
parameter associated with the object).

• addObserver: used to register a new observer
• getPathState: used to provide a snapshot of the state of the path execution.

The ReactivePlanner is a class to generate a new plan when the conditions specified in
UserPreference cannot be met using the current plan. Just as the GuidanceAlgorithm it is an
active object operated by a real—time task that is activated once every Period (where Period is a
template parameter of the class). The ReactivePlanner samples its sensors, consults the current
position on the Path and decides if the evolution is feasible (i.e., compatible with the
UserPreference). Sensors can convey information from the environment and from the user. The
specific algorithm implemented will be developed in WP5. It is possible to connect a
TaskObserver to the planner to keep track of all events that could be potentially be noted in the
execution of a Task (e.g., the number of occlusions found along the way, possible changes in the
physical of the emotional state of the user). Relevant method of ReactivePlanner are:

• activatePlanner: used by the ActivityExecutionEngine to initiate a new task
• start: used to start the execution of a task
• stop: used to halt the execution of a task
• getTaskState: returns the current state in the execution of a task
• addObserver: registers an observer to monitor the execution of the task
• waitForNextActivation: the execution is suspended to wait for the next periodic

activation
• checkPath: used to check if a Path is still feasible given the sensor readings.
• replan: to compute a new plan if the check of the path feasibility fails.

15

Figure 4: The Execution Engine

A possible interaction between the different entities is shown in the sequence chart in Figure
6. We assume the presence of a single Observer (in fact we could have as many as needed).
The diagram is explained as follows:

ACANTO	

16

1. The launcher (that we do not specify here) initiates an activity by invoking
setActivityPlan on the instance Engine of ActivityExecutionEngine

2. The launcher calls start on Engine
2.1. Engine notifies the start event to the observer that samples and notes the state
(2.1.1)

3. Engine extracts the first task from the ActivityPlan
4. Engine activates the instance guidance of GuidanceAlgorithm by passing it a
reference to the Path
5. Engine activates the instance rp of ReactivePlanner passing it a reference to the Path
and to the UserPreference
6. Engine starts guidance
7. Engine starts rp

7.1 rp monitors the execution of the task, until it detects that the Path has been
completed. When this event occurs rp calls taskCompleted on Engine

7.1.1 Engine stops guidance
7.1.2 Engine stops rp
7.1.3 Engine notifies the end to the ActivityObserver, which samples the
state and notes it

8. Engine extracts the next task in the activity and the same sequence as abose is re-
iterated.

Figure 5: sequence chart of a task's execution

3.3.3 Example	 execution	 of	 the	 GuidanceAlgorithm	
Looking at the sequence chart in Figure 6, it is now worth focusing on the sequence of operations
performed by the guidance between step 7 (start) and 7.1.1 (stop).
This is illustrated in the sequence chart in Figure 7. We assume that the guidance algorithm uses
the motorised front wheels to steer the walker and that it only requires to the position of the

17

walker with respect to the path. Furthermore we assume the presence of a single observer (we
could easily generalise to an arbitrary number of observers using the Observer Design
Pattern[2]).
The steps of the sequence diagram are as follows:

1. Engine starts guidance
1.1 guidance notifies the start to the obs (an instance of PathObserver). obs

samples the state and notes the event
2. guidance blocks on a waitForNextActivation call
3. When the Period expires guidance wakes up and samples the localisation

sensor (localisation) through a get call
4. guidance queries currentPath for the point on the Path which is the closest to

the walker
5. guidance computes the control action and sends it to the actuator through a

writeThrough call (see later).
6. guidance calls the notify method on the observer (which samples the guidance

state).
7. Guidance blocks again on a waitForNextActivation cal and the cycle is

repeated.

Figure 6: Close-up on the execution of the GuidanceAlgorithm.

3.3.4 Example	 execution	 of	 the	 ReactivePlanner
We now show three different execution scenarios for the ReactivePlanner.
We assume that our ReactivePlanner only samples the surrounding environment (through an
appropriate instance EvironmentSensor of a Sensor), and that it is attached to a single instance
of TaskObserver named to.
In the first scenario (reported in Figure 8) we show a “nominal” execution where no exceptional
event occurs that could determine changes in the Path.
The sequence diagram can be described as follows.

1. Engine starts the ReactivePlanner rp.
1.1 The event is notified to the to TaskObserver

1.1.1 to samples the rp state
2. rp blocks awaiting the next periodic activation
3. when rp is awakened it samples the localisation sensor to find the current state
4. rp sample environmentSensor to identify obtacles in the surrounding, as well

as the presence of other human and of the partners of the user.

ACANTO	

18

5. rp queries currentPath to identify the position of the walker on the planned
path

6. rp calls its own checkPath method to se if any violation of the constraint is
foreseeable in a future time horizon, given the current situation. The planned
path is still feasible.

7. rp notifies the event to the to TaskObserver
7.1 to samples and notes the rp state

8. rp blocks again until the next activation, where the cycle is repeated.

Figure 7: ReactivePlanner in action the nominal execution case

In the next diagram (Figure 9), we show how to manage “exceptional” situations in which the
device encounters obstacles or exceptional situations. Up until step 6 the Diagram goes as in the
nominal case depicted in Figure 8. We start describing the from this step:

6. rp calls checkPath() but the check fails meaning that the Path is infeasible
7. rp seeks a new plan complying with the constraints

7.1 the call to replan determines the deletion of a point of the current path
7.1.1 after the deletion of a point smoothPath smoothens the Path
generating intermediate points in between the waypoints.

 7.2 a new point is inserted to replace the removed one
 7.2.1 smoothPath is called once again

8. rp notifies the replanning event to the to TaskObserver
 8.1 to samples and notes the state
9. rp blocks awaiting the next periodic activation

19

Figure 8: the ReactivePlanner in action: the case of successful re-planning

We finally document a case of unsuccessful re-planning in the sequence chart in Figure 10. The
chart goes as the case of Figure 9 up until step 7. So we start discussing from this step on.
 7. the call to replan fails because no feasible alternative plan can be found
 8. the event is notified to the to TaskObserver
 9. as a consequence of the failure, taskAborted is called on Engine
 9.1. rp is stopped (and so is guidance). The necessary book-keeping is

made (i.e., calls to the observer)
9.2 replan is called on ActivityPlanner

Figure 9: ReactivePlanner in action: the case of unsuccessful re-planning

3.3.5 The	 Hardware	 abstraction	 layer	

ACANTO	

20

In the illustration of guidance algorithms and of reactive planning presented above, two classes
play a key role: Sensor and Actuator. Such classes are actually an abstraction layer to the
hardware devices embedded in the walker and to the various sensing devices used by its
cognitive component (i.e., for the detection of environment and of user emotional and physical
state). A key architectural choice inherited from the DALi project is the use of the zeroMQ
middleware to interconnect the different components. In essence, each sensing component
embeds its data in a zeroMQ packet, which is received and processed by one of the computing
elements deployed on the FriWalk.
The specification of the different zeroMQ packets is, at the moment of this writing, under
development as newer and newer components become available for the integration.
In this section we focus on what happens after a packet from a “physical sensor” is received or
right before a new packet is composed and sent to an actuator. This is what we refer to as
“hardware abstraction layer” (HAL).
The class diagram of the HAL is depicted in Figure 11.
The first class we introduce is Sensor, which is a template class. Its parameters are the
DataType carried by the Sensor and the Period the sensor is updated with. Its main methods are:

• get: is used by the “owner” of the Sensor to retrieve its contained data. We
have got to versions of get. The first one is asynchronous. The methods
returns a piece of data (instance of the DataType template parameter) and
a Boolean, which is true if the data are fresh or false if the same data have
been used already. The second version of get blocks the caller for a
specified amount of time. In this case, the method returns the data and a
Boolean flag, which is set to true when the get call results in an expiration
of the timeout.

• put: is called whenever a new element of data is available from the
zeroMQ middleware. The put call requires the data element and the
timestamp recorded when the data are fetched. The put call is ignored and
the data are discarded if it occurs before the expiration of the next time
period.

Sensor objects have to be connected to a SensorPort, which is a class directly interfaced with the
middleware. More sensors can be connected to the same port and used by different applications.
SensorPort is a template class of the DataType carried and of a PortDescriptor and is
implemented as a singleton, i.e., a class that can have only a single instancei. We omit the
technicalities here to implement a singleton because they are common knowledge.
PortDescriptor is a data—type containing a number of compile—time parameters such as a port
identifier and the Period.
An example definition for the PortDescriptor is as follows:
 /// typedef struct P1 {
 /// typdef int port_id_type; /* type for port identifier */
 /// static const port_id = 1; /* identifier of a port */
 /// typedef PeriodXXX Period;
 /// } Port1;
///
where the Period can be defined as
///@brief Aperiodic
typedef AcantoCommon::AcantoTimeConstant<int64_t, 0,AcantoCommon::Granularity::MILLI>
APERIODIC;

 ///@brief Localisation period
 typedef AcantoCommon::AcantoTimeConstant<int64_t, 4, AcantoCommon::Granularity::MILLI>
PeriodLoc;
The use of static type definitions enables the enforcement of compile time checks in the definition
of sensors and ports that prevents errors in the intended semantics of the objects without paying
the execution of run—time checks. In this case, we can enforce that the connection of a Sensor

21

to a SensorPort can be made only if both of them carry data of the same type and have the same
Period. Sensor can have a subsampling parameter. If a Sensor is connected to a SensortPort
that is created with subsampling parameter 2, it means that it collects one piece of data from the
port out of two, Relevant methods for SensorPort are

• bind: used to bind a sensor
• disconnect: used to disconnect a Sensor for the SensorPort
• put: called by the middleware clients to insert a data element into the port,

which is then propagated to all Sensor objects connected to the port.
• fire: is an internal (private method) used to insert the newly arrived data

into all Sensor objects connected to the Port.
The structure for the actuators is to a large extent similar to the one for sensors. Once again, two
classes are the cornerstones: Actuator and AcutatorPort, the former being the programming
abstraction used by the guidance applications and the latter being the primary way to
interconnect to the middleware and insert the data into the “actual” actuator. The first important
difference with Sensor is that only one single Actuator instance is allowed to connect to a port at
a given time. The most important methods of Actuator are:

• writeThrough: is used to insert a data into the actuator and send it through
the middleware straight away.

• write: this is used to implement a time—triggered semantics[3] whereby
data are written into the actuators only when the period expires. Therefore,
a periodic write is not immediately actuated but is deferred to the
sampling period expiration. This method is enabled only id the Period is
parameter is not null. Otherwise it is compiled out using the enable_if c++
14 construct.

• get: is used only if the period is not null by the middleware to fetch the
data and pass it over to the actuators.

• setPort: is used to set a pointer to an AbstractDataSink interface (which
the ports shall implement) to direct the write to.

The AbstractSink interface is used to allow the use of ActuatorPort by Actuator avoiding the
problem of cyclic dependencies. Its only method is

• put: used to insert a data element into the actuator port.
Very much like SensorPort, ActuatorPort is once again a singleton (we omit the details for the
implementation of the pattern) and is a template of the PortDescriptor and of the DataType
carried. The only important difference is that in order differentiate the behaviour of periodic and
a-periodic ports it was in this case to create a hierarchy, the use of enable_if for some methods
being insufficient. In this case the difference between the two semantics is not limited to the
presence or absence of some methods, but is more radical. Indeed, the time-triggered
semantics of the periodic case requires that the port be an active object, which wakes up on
period expiration to fetch the data from the Actuator bound and pushes it through the
middleware. In the Aperiodic case, on the contrary, the port can very well be a passive object.
Ports use an interface (AbstractUpdatePortManager) which is an interconnection to the port
middleware. The key method is

• update: used by the port manager to retrieve the data from each actuator port and
send it to the middleware.

The hierarchy for the ActuatorPort is rooted into the class BaseActuator port that implements the
following methods:

• put: inherited from AbstractDataSink with the same semantics explained above
• bind: used to interconnect a new actuator. If an actuator is bound already, the call

disconnects it.
• disconnect: is used to disconnect an actuator from the port.
• start: it starts the operation of a port. It is of practical use only if the port is

periodic.
• stop: it stops the operation of a port.
• get: it is used by the middleware client to retrieve the data element stored in the

port as a result of a call to the update method. It returns the data element and a

ACANTO	

22

Boolean set to true if new data are store in the port that have not been fetched
before and false otherwise.

The specialisation of ActuatorPort for the a-periodic case does not have much to say. More
interesting is the periodic case. In this case the port is connected to a PortThread, which
essentially turns the periodic ActuatorPort into an ActuatorPort.
PortThread is a template of the activation Period and of the Port it animates. Its most important
methods are:

• start: used to start the thread
• stop: used to stop the thread
• body: it is executed on every periodic activation and essentially calls the

updateTrigger on the port causing the data update.
• waitForNextActivation: used to block the task waiting for the next activation

The periodic specialisation of ActuatorPort has the following methods:
• start: used to start the thread managing the port
• stop: used to stop the thread
• updateTrigger : called upon each periodic activation to retrieve the data from

the port.
The WalkerDeviceManager class mediates the interconnection between the ports and the
middleware. It encapsulates and manages all the different ports. To this end it exploits four
different helper classes: two for the management of the localisation system
(RemoteLocalisationClient, RemoteLocalisationSubscriber) and two for the management of the
mechatronic subsystem (WalkerRemoteClient, WalkerSubscriber). Other similar classes will be
defined with the same interface for the integration of environment and user sensing. The class
has the following methods:

• init: used to initialise the ports (e.g., setting the sampling periods).
• start: used to start all the operations of the instances of the helper classes (rlc for

RemoteLocalisationClient, wrc for WalkerRemoteClient, rls for
RemoteLocalisationSubscriber, rlc for RemoteLocalisationClient).

• stop: used to stop the operations of the four helper objects.
• linkSensor: used to link a Sensor to a SensorPort. The method is a template of

the port type. This secures that connections are properly made at compile time.
• unlinkSensor: used to remove a sensor
• linkActuator: used to link an Actuator to an ActuatorPort (identified through its

template parameters).
• unlinkActuator: used to remove an actuator.
• writeLocPorts: function called by the loc_callback to insert a newly arrived

localisation packet into the port
• writeHwPorts: called to insert a newly arrived data element from the sensing

subsystem into the port
• ls_callback: callback function called every time a new data arrives from the

walker sensor connected to the zeroMQ middleware
• loc_callback: callback function called every time a data element related to the

localisation subsystems arrives through the zeroMQ channel.
We omit for the sake of brevity the description of the helper classes. It is more interesting to
look more closely at the sequence charts implementing the data exchange between
middleware, Sensor, Actuator, SensorPorts and ActuatorPorts.

23

Figure 10: class diagram of the HAL

The first sequence chart (in Figure 12) shows the management of Sensor data. The exchanged
messages are as follows:

1. the startup code calls init on the dm instance of the WalkerDeviceManager

ACANTO	

24

1.1 dm calls setSamplingTime on rlc to set the sampling time of the
localisation system.
1.1.1 rlc sets up a proper Json string and transmits it over the zMQ bus.

2. Engine: activates the guidance GuidanceAlgorithm.
2.1 guidance links its sensor to the SensorPort for localisation by calling

linkSensor on dm
2.1.1 dm calls bind on the SensorPort

3. after a Period duration a first sample arrives in the middleware triggering the
recv_callback execution
3.1 recv_callback parses the packet
3.2 loc_callback is called on dm

3.2.1 loc_callback calls writeLocPorts, which prepares the appropriate
data structures to insert the data into the port

3.2.1.1 put is called on the localisation port
3.2.1.1.1 put calls fire
3.2.1.1.2 fire calls put on all the sensors connected to the port

4. in a separate thread of execution guidance samples the sensors, which
receives the freshest data.

Figure 11: sequence chart for the insertion of data into the sensors

Now we use Figure 13 to show a sequence chart for the use of an actuator in the writeThrough
modality. The chart goes through the following steps
1. ActivateGuidance is called on guidance

1.1 guidance calls linkActuator on dm
1.1.1 dm calls bind on the ActuatorPort

2. At some point in its execution guidance calls writeThrough on the Actuator
2.1 calls put on the ActuatorPort

2.1.1 put calls update on dm
 2.1.1.1 update queries in sequence the different ActuatorPort until

it
 finds the one responsible for the request (which return true to get)
 2.1.1.2 update calls a method on the walkerClient to turn the

wheels
to a specified position
 2.1.1.2.1 the setTurn generates the packet and sends it over

25

through the middleware

Figure 12: insertion of data into an Actuator using the writeThrough modality

 Finally, we look at the same type of interaction using a time—triggered Actuator. The
sequence chart is shown in Figure 14.

1. The first step is as for the writeThrough case. Engine activates guidance
1.1 Guidance calls linkActuator on dm

1.1.1 linkActuator calls bind on the ap ActuatorPort
1.1.1.1 bind calls start on ap
1.1.1.2 the call to start on ap determines

a start call on the PortThread
1.1.1.2.1 The thread blocks

until the next
period

2. guidance calls write on the Actuator. Contrary to what we discussed in Figure
12, the write is not immediately propagated to the port, and the data are stored
locally within the actuator.

3. After a Period expires, the PortThread awakens and calls updateTrigger on
the ap ActuatorPort

3.1 updateTrigger retrieves the data from the Actuator through a get call
3.2 updateTrigger inserts the received data into the port through a put call
3.2.1 put calls update on dm and from this point on everything proceeds as in the
writeThrough scenario in Figure 12.

Chapter	 4	 -	 Perception	 of	 users	 and	 environment	

Our design choice based on the adoption of zeroMQ middleware allows us to decouple the
development of the execution components (documented in chapter 3) with the sensing
components.
On the producer side, the only thing that we need to specify for each new component integrates
is: a “topic” (in essence a packet type), the content of each message related to the topic, and the
period at which such messages are sent to the middleware. The zeroMQ middleware allows us to
abstract from the physical deployment of the different sensing components on the walker
hardware and from the networking protocol used. All we need to do is to define the syntax of
each packet and use the JSON based api offered by zeroMQ to stream the data. The specific
syntax of the packets is currently under definition and will be subject to changes and adaptation,
as demanded by the different components developed during the project.
On the consumer side, the way environment and user data are made available to the application
is by extending the HAL described in the previous chapter with the addition of

• new client and subscriber classes for each new component to be integrated (e.g.,
EnvironmentClient, EnvironmentStreamer): the former is used to control the component,
the latter to receive, decode the messages and call the appropriate callbacks

• insert new callback function on the device manager
• define SensorPort to support the new data.

After these steps are taken, the design is perfectly compatible with the execution environment
described in the previous chapter.

27

Bibliography	

[1]	 ACNTO	 Consortium.	 ACANTO	 Project,	 Feb.	 2015.	

[2]	 Gamma,	 Erich,	 Helm,	 Richard,	 Johnson,	 Ralph,	 Vlissides	 John	 (1995),	 Design	 Patterns:	
elements	 of	 Reusable	 Object-‐Ortiented	 Software,	 Addison-‐Wesley.	 ISBN	 0-‐201-‐633361-‐2	
[3]	 Kopetz,	 Hermann,	 and	 Günther	 Bauer.	 "The	 time-‐triggered	 architecture."	 Proceedings	 of	
the	 IEEE	 91.1	 (2003):	 112-‐126.	
	
	

