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Abstract— The increased diffusion of service robots operating
in tight collaboration with humans has renewed the interest of
the scientific community towards realistic human motion mod-
els. In this paper, we present the Headed Social Force Model, a
modeling approach enriching Helbing’s Social Force Model with
Laumond’s human locomotion models. The proposed solution
is shown to inherit the best features of either models, being
able to reliably reproduce pedestrians’ motions both in free
space and in highly crowded environments. Extensive numerical
simulations are presented in order to evaluate the performance
under very different operating conditions.

I. INTRODUCTION

Human motion models have been deeply investigated in

the last decades within different research areas, ranging from

building architectural design to service robotic planning and

control [1]. Recently, novel applications of such models have

emerged in the service robotics field. As a matter of fact,

an ever growing number of applications involve robots that

interact with humans for accomplishing different tasks, such

as guiding visitors in a museum [2], helping navigate visually

impaired people [3] or assisting older adults [4]. Guaran-

teeing safety is of paramount importance in human-robot

interaction. In this context, accurate human motion models

are required in order to predict the trajectories followed by

individuals moving within the robot workspace. The same

models can also be exploited for generating human-like

trajectories for robots, with the purpose of increasing robot

acceptance by the users (the interested reader is referred to

the survey [5] for a thorough review on human-aware robot

navigation).

Proposed approaches to modeling human motion include

cellular automata [6], agent-based models [7] and graph-

based methods [8]. One of the most popular human motion

model is the Social Force Model (SFM), first introduced

in [9] and then refined in [10] and other works by D. Helbing

and his coauthors. The SFM assimilates each individual

to a point-wise particle subject to social forces. In this

way, the pedestrians’ dynamics are described by means of

a system of differential equations. The SFM is especially

well suited to reproduce individual motion of pedestrians in
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high-density scenarios (crowd), as well as the interactions

occurring among pedestrians. Recently, several experimental

studies conducted by J.-P. Laumond and his research group,

have revealed that in many cases the trajectories followed by

pedestrians in uncluttered environments tend to comply with

nonholonomic constraints [11], [12], like those featured by

wheeled vehicles [13]. This phenomenon is a direct conse-

quence of the preference of individuals towards forward mo-

tion, due to biomechanics of humans. In these circumstances,

unicycle-like models are a good approximation of real-

world human locomotion. For instance, unicycle kinematics

is especially accurate whenever pedestrians rely on wheeled

assistive aids, such as smart walkers [14]. In certain situ-

ations, however, sideward motions violating nonholonomic

constraints do emerge quite naturally in practice. Avoiding

an unexpected obstacle, negotiating a narrow passage or

reaching a close goal are typical situations in which unicycle-

like models cease to be valid. To overcome such limitations,

a dynamic model that smoothly switches between holonomic

and nonholonomic locomotion has been proposed in [15].

In this paper, we introduce the Headed Social Force

Model (HSFM), an approach to modeling human locomo-

tion which extends the traditional SFM with the inclusion

of possible nonholonomic constraints. Each individual is

modeled by means of a dynamic system like that presented

in [15], in order to account for holonomic/nonholonomic

motion patterns under different circumstances. The control

inputs are designed as a suitable function of the social

force acting on each individual, computed according to

the traditional SFM [10]. Simulation results show that the

proposed approach enjoys the best features of both Helbing’s

SFM and Laumond’s motion models. Resulting trajectories

satisfy nonholonomic constraints whenever appropriate. At

the same time, the SFM ability to reproduce interactions

among individuals, as well as pedestrian behavior in crowded

scenarios, is preserved.

The paper is organized as follows. The two human motion

models, introduced in previous works and exploited in this

paper, are outlined in Section II. The Headed Social Force

Model is presented in Section III. Numerical simulations

highlighting some key features of the proposed approach are

reported in Section IV. Finally, some conclusions are drawn

in Section V.

II. BACKGROUND MATERIAL

In this section, we present a brief review of the SFM

presented in [10] and the human locomotion model (HLM)



proposed in [15], on which the present work relies. Vectors

and matrices are written in boldface and (·)′ denotes the

transpose operator.

A. Social Force Model

Consider a system of n pedestrians moving in a 2D

environment. The i-th individual, i = 1, . . . , n, is assimilated

to a particle with mass mi, whose position and velocity,

expressed in a global reference frame, are denoted by ri =
[xi, yi]

′ and vi = [ẋi, ẏi]
′, respectively. The equations of

motion are then

ṙi = vi, (1)

v̇i =
1

mi
fi, (2)

where fi, representing the social force driving the i-th
particle, is given by the contribution of three terms

fi = f0i + f
p
i + fwi . (3)

The first term

f0i = mi
v0
i − vi

τi
(4)

accounts for the pedestrian’s desire to move with a given

velocity vector v0
i . In (4), the characteristic time τi > 0 is

a parameter determining the rate of change of the velocity

vector. The terms f
p
i and fwi represent the repulsive forces

exerted on individual i by the other pedestrians and by

possible obstacles present in the environment (e.g., walls),

respectively. The expressions of the forces f
p
i and fwi are

reported in the Appendix for completeness.

B. Human Locomotion Model

In the SFM, a pedestrian is modeled as a point-wise

mass subject to an external force. The model does not

account for the heading of the individuals (e.g., the forward

direction) and, at any time, a person can move freely in

any direction. However, most of the time, humans tend to

move forward, i.e. their velocity vector is aligned with their

heading. This phenomenon has been observed by several

studies [11], [12], which come to the conclusion that a

nonholonomic dynamic system, such as the unicycle model,

could be more appropriate to describe human motion in

many cases. On the other side, there are some circum-

stances in which sideward motions, that indeed violate the

nonholonomic constraints, are commonly observed. Typical

examples include navigating in highly crowded places, like

exiting from a theatre, or avoiding sudden obstacles. In

these cases, unicycle-like models are no longer valid and a

holonomic model is preferable1. In [15], a human locomotion

model (HLM) has been proposed which: i) accounts for

pedestrians’ heading, and ii) reproduces both holonomic and

nonholonomic motion patterns by suitably controlling the

system inputs. Let qi = [θi, ωi]
′ be the vector containing the

heading (direction of forward locomotion) and the angular

1With a slight abuse of terminology, we denote by “holonomic model” a
model not subject to nonholonomic constraints, thus including unconstrained
models.

velocity of the i-th pedestrian in the global reference frame.

Denote by vB
i = [vfi , voi ]

′ the velocity vector expressed in

body frame, i.e. in a reference frame obtained by rotating the

global reference frame according to the pedestrian’s heading

θi. The components vfi and voi of vector vB
i correspond

to the projection of the velocity vector along the forward

direction and the orthogonal direction, respectively. Clearly,

vi = R(θi)v
B
i , where the rotation matrix R(θi) is defined

as

R(θi) =

[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]

.

Then, the HLM can be written as

ṙi = R(θi)v
B
i , (5)

v̇B
i =

1

mi
uB
i , (6)

q̇i = Aqi + biu
θ
i , (7)

where

A =

[

0 1
0 0

]

, bi =

[

0
1
Ii

]

, (8)

and Ii denotes the moment of inertia of pedestrian i. In

the HLM, the control inputs are uB
i = [uf

i , uo
i ]

′, whose

entries are the forces acting along the forward direction and

the sideward direction, respectively, as well as the torque

uθ
i about the vertical axis. Notice that the model (5)-(7)

is indeed a holonomic model. However, if voi (0) = 0 and

uo
i (t) = 0, for all t, the HLM boils down to the dynamic

unicycle model. In general, whenever voi = 0, the HLM

features a nonholonomic behavior, the velocity vector being

aligned with the pedestrian’s heading.

Remark 1: In [15], a single pedestrian is considered and

the HLM is instrumental to formulating and solving an

inverse optimal control problem aimed at identifying opti-

mality criteria guiding human motion. In this paper, we are

interested in modeling the motion of multiple individuals, as

well as the interactions occurring among them, and between

people and environment. To this purpose, the approach

followed in this work is to enrich the traditional SFM with

an enhanced model of human motion model like the HLM.

III. HEADED SOCIAL FORCE MODEL

The scheme of the Headed Social Force Model proposed

in this work is shown in Fig. 1. The basic idea is to exploit

the SFM to evaluate at each time instant the social forces fi
and f0i acting on a pedestrian according to (3)-(4), and then

computing the HLM control inputs uB
i and uθ

i as suitable

functions of fi and f0i , as described below.

A. Control Input uB
i

The input vector uB
i includes the forces acting along the

pedestrian’s forward direction (identified by the heading θi)
and the sideward direction (i.e., orthogonal to the heading θi).
Given the total social force fi, a natural choice for computing

uf
i and uo

i is to project fi along the forward and sideward

directions, respectively. This is done by rotating fi according

to the matrix R(θi)
′. In order to avoid sideward motions if
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Fig. 1. Block diagram of the Headed Social Force Model.

not strictly needed, i.e. in order to reproduce a nonholonomic

behavior as much as possible, the components uf
i and uo

i

can be weighted differently, the weight assigned to uo
i being

smaller than that assigned to uf
i . Finally, in order to drive

to zero the sideward velocity voi when the sideward force is

zero, a damping term proportional to −voi can be added to

uo
i . Hence, the control input uB

i is computed as

uB
i = KBR(θi)

′fi − kdvoi , (9)

where

KB =

[

kf 0
0 ko

]

, kd =

[

0
kd

]

,

and kf , ko, and kd are positive constant parameters. Notice

that if kf = ko = 1, kd = 0 and the pedestrian’s heading

is constant, i.e. θ̇i = 0 for all t, then the dynamic model

(5)-(6), with uB
i given by (9), boils down to the traditional

SFM (1)-(2). However, if θi varies with time, the trajectories

generated by (5)-(6) with input (9) are in general different

from those resulting from (1)-(2).

B. Control Input uθ
i

The input uθ
i represents the torque about the vertical axis

which drives the dynamics of the pedestrian’s heading. This

term is designed on the basis of the force f0i defined in (4).

Recall that such a term accounts for the individual’s intent of

moving according to a desired velocity vector v0
i . In a sense,

f0i models long-term objectives, such as passing through a

given sequence of way-points, whereas the forces f
p
i and fwi

accounts for short-term corrective actions, such as maneuvers

needed to avoid nearby obstacles or pedestrians. Denote by

f0
i and θ0i the magnitude and the phase in the global reference

frame of the force term f0i . Notice that both quantities are

in general time-varying. The input uθ
i is computed as

uθ
i = −kθ(θi − θ0i )− kωωi. (10)

The parameters kθ and kω are designed in order to achieve a

suitable dynamic performance. It can be easily verified that,

with uθ
i defined as in (10), the orientation error θ̃i

.
= θi− θ0i

evolves according to the dynamic model

¨̃θi +
kω

Ii

˙̃θi +
kθ

Ii
θ̃i = −

kω

Ii
θ̇0i − θ̈0i . (11)

A possible design procedure is to select the values of kθ

and kω on the basis of the desired poles λ1 and λ2 of the

dynamic system (11). In this work, desired real poles are
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Fig. 2. Scenario I. A single pedestrian has to move back and forth between
A and B, starting from an arbitrary initial position S, with a desired speed
v0 = 1.5 ms−1: SFM (red) and HSFM (blue).
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Fig. 3. Scenario I. A single pedestrian has to move from A to B, starting
with the point B behind her back, with a desired speed v0 = 1.5 ms−1:
SFM (red) and HSFM (blue).

considered, so that λ2 = αλ1 < 0, for some α > 1. In turn,

the dominant pole λ1 is selected as a function of f0
i

λ1 = −

√

kλf0
i

α
,

where kλ > 0 is a constant parameter. The corresponding

expressions of kθ and kω are then

kθ = Iik
λf0

i , kω = Ii(1 + α)

√

kλf0
i

α
. (12)

The choice of time-varying poles allows one to modulate the

responsiveness of the system with the intensity of the driving

force f0i . The underlying idea is that the more authoritative

the f0i , the faster the change in the pedestrian’s heading. In

this way, the heading convergence rate is proportional to f0
i .

IV. NUMERICAL RESULTS

In this section, numerical simulations are presented to

demonstrate how, using the HSFM, each agent smoothly

switches between holonomic and nonholonomic behaviors,

depending on the current external conditions. The value of

the parameters of the SFM are taken from [10] and are

reported in the Appendix. The reference velocity vector v0
i

in (4) is generated as v0
i = v0e0i . The desired speed v0 is

assumed constant in all the simulations. The unit vector e0i ,

which identifies the desired direction of motion, is computed

from a sequence of way-points encoding the desired pedes-

trian path, similarly to [9]. The inertia moment Ii in (8) is

computed from the pedestrian’s mass mi and radius ri as

Ii = 1
2mir

2
i . The following parameters of the control law

(9)-(12) have been used in all the simulations: kf = 1, ko =
0.3, kd = 5, α = 3 and kλ = 0.02. Three different scenarios



are simulated, each of them highlighting a characteristic fea-

ture of the proposed model. Videos of some simulations are

available at http://control.dii.unisi.it/MobileRoboticsPage.

A. Scenario I: The Nonholonomic Behavior

Empirical evidence shows that when a single pedestrian is

moving in an open space, she tends to move as a unicycle

[12]. In this respect, a good model is expected to be able to

reproduce such a nonholonomic behavior.

Let us consider a simple example, in which a single pedes-

trian walks between two points A and B, alternately, starting

from an arbitrary point S. In this case, the trajectory resulting

from the SFM is quite unnatural. Once point A is reached

for the first time, the trajectory boils down to a segment (see

red line in Fig. 2). This phenomenon is due to the SFM

neglecting the information about the pedestrian’s heading,

so that forward or backward motions become equivalent. On

the contrary, the trajectory generated by the HSFM is more

realistic thanks to the existence of a preferred direction of

motion (see blue line in Fig. 2). Although the HSFM allows

a pedestrian to have her velocity vector not aligned with her

heading, the control input uB
i tends to drive the orthogonal

component of the velocity to zero if no lateral forces are

present (“almost nonholonomic” behavior).

In the same scenario, consider the case in which a

pedestrian has to move from A to B, starting with the

initial heading θi(0) = π, i.e. the goal point B is behind

pedestrian’s back. As shown in Fig. 3, using the HSFM, the

pedestrian takes a step back to turn towards the goal, and

then moves forward to reach the target. Clearly, the SFM

trajectory lies on a segment once again, since the heading is

neglected.

The previous examples confirm that, in the considered

scenario, the HSFM yields a more realistic behavior, giving

to the pedestrian the ability of moving in a nonholonomic

way when she is expected to do so.

B. Scenario II: The Adaptive Behavior

While human motion tends to be fully nonholonomic in

open spaces, a holonomic behavior is typically observed in

crowded environments. This second set of simulations aim at

showing the HSFM ability of adapting to external conditions

by automatically switching between the two behaviors. In

Scenario II, a group of 20 pedestrians, walking in the same

direction in a 7m-wide corridor at a desired speed v0 = 1.5
ms−1, have to pass through a 2m-wide door. In Fig. 4, a

snapshot of a simulation run, taken while pedestrians are

crossing the door, is depicted. The adaptive behavior of the

HSFM can be inferred by looking at Fig. 5, where the ratio
vo
i

vf
i

is shown for all the pedestrians. Such a quantity is a

measure of the misalignment between the velocity vector and

the pedestrian’s heading, being zero in correspondence of a

nonholonomic motion. It can be seen that, after a transient

during which all the pedestrians align their velocity vector

towards the desired direction of motion, the ratio
vo
i

vf
i

is

always almost zero, except during the door crossing. This

means that, in the corridor, where the pedestrians’ density is

Fig. 4. Scenario II. A group of 20 pedestrians walking in the same direction
in a 7m-wide corridor at a desired speed v0 = 1.5 ms−1. A snapshot of a
simulation run of the HSFM, taken while pedestrians are crossing the door.
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relatively low, the resulting trajectories do not differ much

from those of a traditional unicycle. On the contrary, during

the door crossing, significant sideward motions are taken by

the pedestrians in order to avoid contacts. It is worth stressing

that this qualitatively different beahviors are automatically

reproduced by a single instance of the HSFM, without the

need of modifying the value of any of its parameters.

In order to compare the trajectories generated by the SFM

and the HSFM, a Monte Carlo analysis has been performed.

Starting from random initial positions and headings of the

pedestrians (with zero initial velocity), 100 runs of the SFM

and the HSFM have been simulated for 20 s. For comparison

purposes, the following indicators have been considered:

• the average exit frequency of pedestrians F , i.e. the

average number of pedestrians that pass through the

door per unit time;

http://www.dii.unisi.it/~control/MobileRoboticsPage/#tth_sEc3.5


• the average bending energy of the trajectories

B =
1

n

n
∑

i=1

1

T

∫ T

0

κi(t)
2dt, (13)

where the curvature κi(t) of the i-th trajectory is defined

as

κi =
ẋiÿi − ẍiẏi

(ẋ2
i + ẏ2i )

3

2

; (14)

• the average squared magnitude of the jerk of the trajec-

tories

J =
1

n

n
∑

i=1

1

T

∫ T

0

||ji(t)||
2dt, (15)

where ji = v̈i is the jerk vector of the i-th trajectory.

The first indicator has been selected as a measure of the

macroscopic behavior of the models. The last two indicators

are used to evaluate the regularity of the resulting trajectories.

The bending energy is a measure of the smoothness of a

trajectory [16], whereas the jerk is commonly used in trans-

portation systems to evaluate the user’s comfort associated

to a given trajectory.

Concerning the exit frequency, both models give similar

results, with average values FHSFM = 2.73 s−1 and

FSFM = 2.77 s−1. Also the empirical distributions of the

exit frequency, computed from the trajectories generated by

the SFM and the HSFM, are very similar. Overall the two

models seem to reproduce the same macroscopic behavior.

However, significant differences can be appreciated by look-

ing at the regularity of the resulting trajectories. The average

bending energy is BHSFM = 85 m−2 and BSFM = 1.440
m−2, for the HSFM and the SFM, respectively. Also the

squared magnitude of the jerk is very different in the two

cases, with average values JHSFM = 2.14 · 10−5 m2s−6

and JSFM = 1.57 · 10−4 m2s−6. These figures capture

the different qualitative behaviors that can be observed by

looking at the resulting trajectories. When compared to the

HSFM, in the proximity of the door, the SFM tends to

generate vibrations, sudden changes of direction and even

“bounces” among pedestrians or between pedestrians and

walls. To get an idea of the very different motion patterns

resulting from the two models, in Fig. 6 the magnitude of

the jerk and the curvature as a function of time, during a

single run, are reported for all the pedestrians.

C. Scenario III: A Highly Crowded Environment

The objective of simulations carried out in the third

scenario is to evaluate to what extent the HSFM is able to

preserve the good predictive capability of the SFM in the

presence of a high density of pedestrians. As a matter of fact,

the SFM is very accurate when modeling highly crowded

environment, such as escape panic situations.

To this aim, we have simulated the same evacuation

example presented in [10], in which 200 pedestrians must

evacuate a 15m×15m room through a door of width 1 m. In

these conditions, the exit becomes a bottleneck and arching

and clogging arise in the proximity of the door. In [10], it

was studied how the exit frequency varies with the desired
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(second row) for the trajectories generated by the SFM (first column) and
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speed v0 of the pedestrians. As expected, at slow speeds,

the frequency grows with v0. However, when v0 exceeds

a threshold value (about 1.5 ms−1) the frequency drops

due to the increased jam induced by panic (the so called

“faster-is-slower” effect). In order to evaluate the ability of

the HSFM to reproduce such a phenomenon, the evacuation

experiment has been simulated for 60 s, at different desired

speeds, ranging from 0.5 ms−1 to 6 ms−1. For each simula-

tion run, the average exit frequency resulting from the SFM

and the HSFM has been computed. The results are pretty

similar (see Fig. 7), thus confirming the adequateness of the

HSFM also in highly crowded environments.
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HSFM (solid green).



V. CONCLUSIONS

In this paper, a new human motion model, called Headed

Social Force Model, has been proposed. It combines together

the pros of the traditional Social Force Model with a more

realistic dynamic model of human locomotion. It is shown

that the HSFM is able to reproduce both nonholonomic

motion patterns (like those typically followed by pedes-

trians moving in free spaces) and holonomic behaviors,

such as sideward motions that naturally arise in crowded

environments. One key feature of the proposed model is

its ability to automatically adapt the characteristics of the

generated trajectory to the external conditions, without the

need of changing the values of the model parameters or even

switching between different models.

This work is still in a preliminary stage and a number

of developments are currently under investigation. Among

them, the most important one is the enhancement of the

model with the inclusion of additional force terms to re-

produce the typical behavior of people moving in group.

APPENDIX

A. Repulsive Forces in the SFM

The complete expressions of f
p
i and fwi in (3) are reported

hereafter. Let the radius of the i-th pedestrian be denoted by

ri. Moreover, let us define

rij = ri + rj , (16)

dij = ‖ri − rj‖, (17)

nij =
ri − rj

‖ri − rj‖

.
= [nij(1), nij(2)]

′, (18)

tij = [−nij(2), nij(1)]
′, (19)

∆v
(t)
ij = (vj − vi)

′tij . (20)

• The term f
p
i , modeling the repulsive effects of other

pedestrians on individual i, is given by f
p
i =

∑

j, j 6=i f
p
ij . The force exerted by pedestrian j on pedes-

trian i is

f
p
ij =

[

Aie
(rij−dij)/Bi + k1g(rij − dij)

]

nij

+ k2g(rij − dij)∆v
(t)
ij tij , (21)

where g(x) = max{0, x} and Ai, Bi, k1 and k2 are

constant parameters. Notice how fij is composed by

three terms. The first one, Aie
(rij−dij)/Binij , repre-

sents the repulsive term, while k1g(rij − dij)nij and

k2g(rij − dij)∆v
(t)
ij tij represent the compression and

friction forces, respectively, and come into play only if

dij < rij .

• The term fwi , modeling the repulsive effects of obstacles

or boundaries such as walls on individual i, is given

by fwi =
∑

w fwiw. The force exerted by wall w on

pedestrian i is

fwiw =
[

Awe
(ri−diw)/Bw + k1g(ri − diw)

]

niw

− k2g(ri − diw)∆v
(t)
iw tiw . (22)

The expression of fwiw is is pretty similar to that of the

repulsive force between pedestrians f
p
ij . Quantities diw,

niw, tiw and ∆v
(t)
iw are defined according to (17)-(20),

by replacing rj with the coordinates of the closest point

of wall w to pedestrian i and setting vj = 0.

In this paper, the radius ri and the mass mi of each

pedestrian have been randomly generated in the intervals

[0.25 m, 0.35 m] and [60 kg, 90 kg], respectively, assuming

uniform distributions. In accordance with [10], the following

parameters have been used for all i and w: τi = 0.5 s, Ai =
Aw = 2 · 103 N, Bi = Bw = 0.08m, k1 = 1.2 · 105 kg s−2,

k2 = 2.4 · 105 kg m−1s−1.
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