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Executive	Summary	
In this deliverable we present and investigate various options for sensing the user
(biosignals / biometrics) in a non-obtrusive way by instrumentation of our FriWalk/FriTab
and selectively also the user in the case of wearable technology. In this respect we consider
commercial off-the-shelf (COTS) devices and we discuss as well our research outcome that
bridges the gap in case of missing commercial solutions. We carefully consider desired KPI’s
of our solutions, e.g. minimum form factors, a reasonable pricing etc. even at the early state
of conception.

Next we give a first concept for modeling the user state derived from the individual sensor
measurements and address the tradeoff between specificity and semantic meaning by
introducing a hierarchical aggregation of sensory information.

Localization is a central aspect in ACANTO for giving guidance and destination specific
information. Since each FriWalk is a CPS interlinked and being able to communicate with
other FriWalk devices we introduce a novel concept of collaborative localization.
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Chapter	1	
Introduction		

1.1 Role	of	this	deliverable	within	WP3	
One of the key ideas of ACANTO is to learn as much as possible about the user of the
FriWalk without the necessity to have this information actively provided by the user, since we
want to ease the burden for our target group and not to pose an additional challenge. In
other words this means continuous observation and perception of the user’s state.  Some of
the observations will be relevant only at the time of the measurement, some will be
meaningful by aggregation over a longer period of time, some of them indicate physiological
conditions with medical relevance (e.g. with respect to therapeutic goals) while others
address the motivational level or mood of the person. In any case, the means to gather all
this information are the sensors. These sensors are deployed on the FriWalk/FriTab or
alternatively also on the user, while the latter option is considered very carefully since we
want to acquire data in an utmost non-obtrusive way whenever possible. In terms of sensors
and also intermediate level information derived from them like biosignals we don’t want to
reinvent the wheel. Hence it is important to have a look at the available COTS solutions in
this domain (in particular on consumer devices which are widespread nowadays due to a
general trend to fitness and a healthy lifestyle), which have to satisfy some special
requirements in our case. In case such devices or solutions do not exist research has been
carried out and preliminary results are presented aiding in rating the feasibility. Condensing
the plurality of information into a semantically meaningful user state model is the next step. A
tradeoff between specificity and semantic meaning has to be found in this respect, i.e. not all
information will be helpful for each recipient. We address this issue by introducing a
hierarchical aggregation of sensory information. Platform localization is investigated carefully
as well. Since the user is “linked” to the FriWalk we implicitly localize the user via this
technique, hence this can also be considered as user sensing. However, the platform
localization is different from the perspective that it can use intrinsic (e.g. odometry) as well
as extrinsic (e.g. GPS) cues. Furthermore, localization can also be performed in a relative
manner, i.e. with respect to other FriWalk units by introducing of a novel concept of
collaborative localization that reflects an aim of ACANTO in a very natural manner: fostering
group activities and social contacts amongst older adults.

1.2 Deliverable	objectives		
The aim of this deliverable can be summarized as follows:
§ Identify suitable solutions for sensing of biosignals and biometrics in the context

of FriWalk/FriTab. This includes commercially available (consumer) devices as well
as the validation/proof of concept of scientific approaches in cases a proper COTS
solution is lacking according to our knowledge.

§ Conception of a user state model that is derived from the sensory information
§ Develop and present a novel concept for collaborative or synergic localization of

an ensemble of FriWalk units.

1.3 Deliverable	organization	
The rest of the deliverable is organized as follows: In chapter 2 we present various options
on user-centric sensing including wearables, non-contact measurements for heart and
respiration rate and higher level person analytics like gait and body analytics. Chapter 3
presents a first concept on how to model and semantically abstract the users state from the
plurality of sensory and intermediate level information derived in chapter 2. Of course both
chapters are closely interlinked with each other in an iterative sense; the modeling provides
us an indication on what sensory information is required (top-down) while the sensor level
motivates the processing of existing sensory data (bottom-up). Chapter 4 reports on
concepts for localizing the FriWalk (and implicitly the user therefore) in the environment. In
particular chapter 4 elaborates on a novel concept for collaborative or synergic localization.
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Chapter	2	
User-Centric	Sensing	(Biosignals	/	Biomterics)	
	
2.1	Wearables	and	Smart	Fabrics	(SIEMENS)	
This chapter deals with wearable biometric sensing devices (“wearables”) such as
wristbands or smart garments. Requirements for these wearables are motivated, results of
the subsequent desk search are discussed and results of the corresponding experiments are
presented.
	
2.1.1 Requirements	
There are dozens of biometric sensing devices available, but not every wearable is
applicable to the ACANTO project. To facilitate the search for appropriate wearables, certain
constraints (“KPI’s”) were defined; they were be classified into the main requirements
“Permanent wearability”, “Data acquisition and availability”, and financial aspects (“Price”).
An overview of these requirements and derived sub demands are listed in
Table 1.

MAIN REQUIREMENT DEMAND DESIRED VALUE,
ANSWER OR RANGE

Permanent wearability Battery lifetime 5 days and more

Water proof Yes

Data acquisition and availability Steps Yes

Sleep Yes

Other health related data Heart rate and beyond

Synchronization Bluetooth and via
Desktop application

Data availability Open system

Price Price Below 100€

Table 1: Overview of the requirements and derived demands for the desk search for
wearable biometric sensing devices.

Note that the listed demands are suggestions, not all of them are “deal breakers” – if e.g. a
wearable is more expensive, but complies with all other requirements, can be still considered
a potential sensing device.

2.1.2 Desksearch	
According to the definitions in 2.11, an extensive desk search was conducted. See Table 2
for the results.
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Table 2: Overview of the investigated devices according to the requirements defined in Table 1;
battery life (according to which this table is sorted) is given in days, “Y/N” stand for Yes/No, “HR”
is heart rate, “HRV” is heart rate variability, “Oxy” is blood oxygen, “Resp” is respiration, “T” for
temperature, “Persp” for perspiration, “UV” for ultra-violet light detection, “BT” stands for
Bluetooth; green shades cells indicate satisfied demands, bold-faced rows represent chosen
devices.
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Table 2 is sorted by decreasing battery life (in days); it can be seen that long-living devices
(> 150 days) lack functionality in terms of other medical measurements as e.g. heart rate.
The “Withings Heartrate Ox”, “Jawbone Up24”, “Mio Fuse”, and “Spire” are either not water
proof, lack additional functions or do not support sleep tracking.

The “Jawbone UP3” and the “Fitbit Charge HR” are similar products, with the former being
a promising new device and the latter being an established wearable device well rated by
other costumers. Both products are seen suitable for the testing phase of the ACANTO
project. Other products were withdrawn from the list of potential wearables due to their lack
of sleep tracking or other medical measurements, short battery time or their sensitivity to
water.

Despite the relatively high price, the “Hexoskin Smart garment” is a promising wearable. It
is well rated and offers a lot of additional measurements as well as it allows a complete
access to each measured quantity. Its short battery life might impede its permanent use, but
it could serve as an appropriate ground truth for the medical measurements.

Due to their (in comparison) very high prices and/or very low battery life, smart watches like
e.g. the “Apple Watch” or the “Motorola Moto 360” were not considered in Table 2.
	

2.1.3 Experimental	Results	
In this section a review of the experiments with the chosen devices is presented. A check on
the promised features of Table 2 is performed and further remarks are made. At the end of
this section, the wearable devices are compared.

“Jawbone Up3”

Battery lifetime The battery of the “Jawbone Up3” lasts about 5-6 days, which is below
the promised 7 days but still close enough.

Water proof
Accidental splashes of water (e.g. while washing dishes) did not harm the
device; further tests regarding its water resistance have not been
conducted.

Steps

Steps are counted in a conservative manner: accidental shocks or
clapping are not recognized as steps, but also a fraction of real steps is
missed. See Figure 2 (left) for a screenshot of the activity screen of the
smart phone app.

Sleep
Sleep is not recognized completely independent, but in a detailed
manner: Awake phases as well as phases of light, deep and REM sleep
are distinguished (see the right picture of Figure 2).

Other health
data

The only non-derived medical quantity is the resting heart rate, which is
measured once a day before wake-up. The promised values for
temperature and perspiration are either not measured or not displayed.

Synchronization
The “Jawbone Up3” delivers every of its 48 measured quantities as a
daily average. Communication to the „Jawbone“ server is only possible
via Bluetooth, thus a new-generation smart phone is mandatory.

Data availability Data is available in CSV format after login into the „Jawbone“ home
page.

Price The price before taxes (€172) was – due to supplier difficulties – higher
than assumed.

Other remarks
The device has no display; the only communication with the user is via
vibration. Its wearability is limited due to a poorly designed clip which
leads to accidental opening and potential loss of the device.

Table 3: Results for the “Jawbone Up3” after first tests, considering the requirements defined in
Table 1 and regarding the promised features depicted in Table 2.



ACANTO	

8

Figure 1: Commercial picture for the “Jawbone Up3” tracker.

Figure 2: Screenshots of the “Jawbone” smart phone app,
depicting activities of one day (left) and sleep analysis (right).

Figure 3: Possible representation of „Jawbone“ data: Resting heart rate (blue bars) and active
minutes per day (red line) over time; zero values indicate in both plots indicate an interruption of
the experiment by the user, not malfunction of the device.
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 “Fitbit Charge HR”

Battery lifetime The battery of the “Fitbit Charge HR” lasts about 4-5 days, which hits the
promised 5 days.

Water proof
Accidental splashes of water (e.g. while washing dishes) did not harm the
device; further tests regarding its water resistance have not been
conducted.

Steps

Steps are counted in an offensive manner: no steps are missed, but
accidental shocks or clapping might be recognized as steps. See
Figure 5(left) for a screenshot of the activity screen of the smart phone
app. Note that not only steps, but also climbed floors are accurately
recognized.

Sleep

Sleep is recognized completely independent in a superficial manner:
Awakeness as well as phases of restlessness are distinguished (see the
right picture of
Figure 5).

Other health
data

The only non-derived medical quantity is the heart rate, which is
measured continuously via the optical “PurePulse” technology. The
resting heart rate is determined via a smart averaging algorithm.

Synchronization

The “Fitbit Charge HR” delivers every of its 17 measured quantities as a
daily average. Communication to the „Fitbit“ server is possible via
Bluetooth (and a new-generation smart phone), but also via an USB
dongle. Unfortunately, some data are not openly available.

Data availability This data is available in CSV format after login into the „Fitbit“ home
page.

Price The price before taxes (€110) was – due to supplier discount – lower
than assumed.

Other remarks The device has a display with all key quantities displayed. Its wearability
is great due to a well designed clip.

Table 4: Results for the “Fitbit Charge HR” after first tests, considering the requirements defined
in Table 1 and regarding the promised features depicted in Table 2.

Figure 4: Commercial picture for the “Fitbit Charge HR”.
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Figure 5: Screenshots of the “Fitbit” smart phone app, depicting activities of one day (left) and
sleep analysis (right).

Figure 6: Analysis chart of a “Fitbit” workout, displaying the continuously measured heart rate,
the according heart rate zones and calorie burns.
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“Hexoskin” smart shirt

Battery lifetime

Since the “Hexoskin” was only used as a reference, no long-time
experiments for battery life determination have been conducted; the
short-time experiments suggest that the promised 14 hours of intensive
recording are a good estimation.

Water proof
The shirt itself is machine-washable, the recording device is endures
splash water; since showering with the „Hexoskin“ smart shirt does not
make sense, this point is of minor importance.

Steps
Steps are counted in a conservative manner: accidental shocks or
clapping are not recognized as steps, but also a fraction of real steps is
missed.

Sleep Experiments for sleep analysis have not been conducted yet.

Other health
data

The device measures the patient’s real time ECG and acceleration in all
3 spatial dimensions; these data are used to derive heart rate, heart rate
variability, breathing rate, breathing volume, steps and other.

Synchronization
The „Hexoskin“ smart shirt delivers each point of measurement of its 21
quantities. Communication to the „Fitbit“ server is possible via Bluetooth
(and a new-generation smart phone), but also via an USB dongle.

Data availability

All data is openly available. Due to the high measurement frequency,
about 100 MB of data are produced during one hour of measurement.
Basic data is available as CSV, detailed raw data is accessible as binary
data (which can be converted to CSV).

Price The price before taxes (€549) was – due to supplier difficulties – higher
than assumed.

Other remarks

The shirt delivers accurate measurements and can be seen as gold
standard for the measurements of heart rate and breathing rate. Due to
its battery life, the price and the wearability – the shirt fits very tightly – it
is not suitable for broad field experiments, but greatly applicable in the
validation of other biometric sensors.

Table 5: Results for the “Hexoskin full kit” after first tests, considering the requirements
defined in Table 1 and regarding the promised features depicted in Table 2.

Figure 7: Commercial picture for the “Hexoskin full kit”, including the smart shirt (left), the
recording device (middle), and the proprietary charging/uploading cable (right).
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Figure 8: Screenshots of the Hexoskin analysis dashboard, with the basic metrics (heart rate,
breathing rate, minute ventilation, activity, and cadence) on the left and the raw data (ECG,
respiration, and acceleration in all 3 dimensions) on the right; note the different time scales.

Overview:

The key findings are summarized in Table 6.

Device Battery Water Steps Sleep Other Synchro Open Price

Jawbone + 0 + ++ – – + –

Fitbit 0 0 + + 0 + 0 +

Hexoskin – 0 ++ ? ++ ++ ++ – –

	
Table 6: Overview over fulfillment of the requirements defined in

Table 1 after first test runs, with the used symbols standing for the following:
“– –“  … “Not fulfilling the requirements”
“–“ … “Barely fulfilling the requirements”
“0” … “Acceptable”
“+”   … “Good”
“++” … “Requirements exceeded”
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2.2 Smart	Shoe	Insoles	(SIEMENS)	

2.2.1 Requirements	
In contrast to the wearable devices presented in the previous section – products which have
been developed merchandised and improved for years now – the market for smart shoe
inlays is still developing.  Since only few products are already commercially available, the
requirements for shoe inlays are less rigid than for wearables as given in
Table 1. Note that the shoe inlay requirements presented in Table 7 are again not hard
constraints but suggestions.

MAIN REQUIREMENT DEMAND DESIRED VALUE,
ANSWER OR RANGE

Permanent wearability Battery lifetime 1 day and more

Data acquisition and availability Pressure Yes

Temperature Yes

Steps Yes

Synchronization Bluetooth (or similar)

Data availability Open system

Commercial availability Commercial availability Yes

Table 7: Overview of requirements & derived demands for the desk search on smart shoe inlays.

2.2.2 Desk	search	
As mentioned before, the market of smart shoe inlays is still at the very beginning. See
Table 8 for the results of the desk search of the shoe inlays regarding the requirements
defined in Table 7.

Device Battery Pressure Temp. Steps Synchro Data Availab.

Moticon OpenGo
Science 14 Y N Y ANT+,

USB Y Y

Lechal Insole 3 N N Y BT Y? Y

OpenShoe 0.06 Y N ? BT Y N

Retisense
Stridalizer 7 Y N Y BT N? N

Digitsole 3 N Y Y BT ? Y

VitaliShoe ? Y N Y ? ? N

Uniklinik
Magdeburg ? Y Y ? ? ? N

Table 8: Overview of the investigated shoe inlays according to the requirements defined in
Table 1 battery is given in days, “Y/N” stand for Yes/No, “BT” stands for Bluetooth; green shades
cells indicate satisfied demands, bold-faced rows represent chosen devices.
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Only the “OpenGo Science” device from “Moticon” arises as a potential device for ACANTO.
Besides the commercial availability, it offers high-resolution pressure measurement while
offering various communication channels (either via ANT+, a network protocol, or via USB)
and open data.
	
2.2.3 Experimental	Results	

Battery lifetime
Battery lifetime is not a limiting factor, since the button cells last about
two weeks; the memory capacity of the insole is – at a recording rate of
50 Hz – limited to about 6 hours.

Pressure Each insole of the “Moticon OpenGo Science” is equipped with 13
capacitive pressure sensors (see Figure 9).

Temperature The influence of temperature is neglected.

Steps Since each step is analyzed in detail, steps are counted at maximum
precision.

Synchronization
For financial reasons, we opted for the ANT+ communication only. For
every minute recorded (at 50 Hz), the data transfer will last about 30
seconds.

Data availability All data is available in CSV format.

Commercial
availability

The product is only available directly from the producer, starting at
€4.000 (before taxes) for a basic version.

Other remarks

In Figure 10, you see a screenshot of the “Moticon Beaker 5”, the
associated software package, which allows the collection and analysis
of the data. There are two different recording modes: While “Live
Capture”, the current pressure distribution is visible and the insoles
have to be connected to the computer all the time (via ANT+ stick);
while “Recording” no live information is visible (the data is saved to the
insoles), but no connection to the computer is necessary.

The “Analyze” tab in the “Beaker 5” software package allows a broad
analysis of all used pressure sensors, including several derived
quantities such as centre of pressure (indicated in black cross in Figure
10).

Table 9: Results for the “Moticon OpenGo Science” shoe inlays after first tests, considering the
requirements defined in Table 7 and regarding the promised features depicted in Table 8.
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Figure 9: Part of the “Moticon OpenGo Science” specification,
depicting the arrangement of the pressure sensors.

Figure 10: Screenshot of the Moticon Beaker 5,the software package for measurement recording
and analysis; depiction of the tree structure of experiment protocol (left), pressure distribution of
the shoe insoles at a certain point in time (middle), and the total force per foot over time (right).
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2.3 Non-contact	Respiration	Pattern	Measurement	(SIEMENS)	

Besides measuring the pulse (i.e. heart rate) the respiration rate and respiration pattern can
reveal important details on peoples current and general physical condition, e.g. if and you
much the respiration pattern is reacting when walking on an ascending slope. During the
desk search we identified an innovative solution that claims being capable of reading the
respiration pattern from distance via radar measurement [1]. The website of the
manufacturer explicitly mentions “senior health care” as a potential field of applications:
“There are also many opportunities to use XeThru technology for home-based senior health
care. While maintaining senior’s privacy, the XeThru respiration module can monitor their
respiration throughout the night and alert caring family members of any pattern
irregularities. Seniors can be given the opportunity to remain independent and live longer in
their homes, while family members are granted peace of mind knowing they can still provide
care for their loved ones even if they are living far away”

A white paper available from [1] describes the technical details. The key principle is to
measure in sub-mm resolution distances variations in the chest movement.

Figure 11: Respiration pattern from adult sitting at range 2 m (taken from [1]).

The following figure shows the components of the sensing module (disassembled for better
visibility), the main PCB measures around 6 cm in width. The device uses Ultra-Wideband
(UWB) Impulse Radar, and is “…able to provide medical grade data in a consumer setting,
at a low cost.” according to manufacturer information.

Figure 12: XeThru module and interface card.
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In the white paper there is already a factor mentioned that will limit our practical application
in the scope of ACANTO: “Respiration rate is the number of breaths a person takes per
minute, and is best measured when a person is at rest.” The key advantage of the
technology is being non-invasive so it does not need to be attached to the chest, but could
be installed on the walker, which of course violates the constraint of being at rest. According
to the manufacture it works highly accurate for distances up to 5 m. Hence we performed a
series of practical experiments so verify how a person in move would alter the measurement
performance. We use the smart garment Hexoskin for that purpose.
Figure 13  shows our des setup on desk as well as on the walker.

Figure 13: Test setup on desk (left) and on the walker (right).

Both experiments revealed a relatively poor performance of the XeThru module. We have
been in contact with the manufacturer several times to identify a potential problem on our
side but everything seems to be set up properly. We even tested two different modules to
exclude the likelihood of a defect one.

The following diagrams compares the results from the XeThru module compared to
Hexoskin for a short ride with the walker. The deviation is clearly observable. Not only is the
XeThru module incapable of measuring a respiration rate most of the time but also the
positively reported values show a significant variation. This is in contrast to what we observe
from the Hexoskin which appears much more plausible for a short ride on a horizontal
ground by a young adult. Hence we have to conclude XeThru is not useful in the scope of
our ACANTO project at least in the current firmware/technology version.
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Figure 14: Respiration pattern on a short ride with the walker. XeThru (top) vs. Hexoskin
(bottom). The relevant figure (“breathing/respiration rate”) is the blue diagram in both cases.
XeThru delivered inconsistent values during this short ride while Hexoskin tracked more plausible
values.
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2.4 Non-contact	Pulse	Measurements	(UNITN)	

The possibility to detect subtle changes in videos of human skin has been recently
investigated and has attracted a lot of attention in the community. These changes appear
both in skin color and in subtle motions, and are caused by internal functioning of the heart
(Figure 15). Since faces appear more frequently in videos, and due to significant
improvements in face alignment methods, many research groups have tackled face-based
remote heart rate analysis.

Figure 15: The heart circle consists of the following states: P Q R S T U. These states can be
measured by an ECG device by connecting several leads to the subject’s body. As it was
recently showed, several of those states can be detected via Remote Heart Rate Measurement.

Our pipeline for remote heart rate measurement involves several stages of processing (
Figure 16):

1. Face registration. It was shown that face registration has significant influence on
forthcoming steps, since if done poorly it adds high frequency noise, which is difficult
to filter afterwards.

2. Face region extraction. It is preferable to select a region less affected by
movements and facial expressions.

3. Signal processing 1. During the first stage of signal processing the signal is filtered
with digital filters.

4. Signal processing 2. During the second stage of signal processing, power spectral
density estimation methods are used to determine the heart rate

Figure 16: Pipeline for remote heart rate measurement.

Time
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In the ideal situation, when there are no motions (see Figure 17) and facial expression, many
of the available methods in the literature [2][3][4][5][6][7] can reliably measure the heart rate.
However, despite many attempts made, remote heart rate analysis still suffers from major
limitations. Most of the methods impose constraints on subject's movements requiring the
absence of facial expressions and mimics. These constraints do not hold in real world
scenarios envisioned in ACANTO. Clearly, those methods are highly affected by the
increased level of noise that appears when subjects behave naturally.

Figure 17: The green signal shows the ground truth ECG, the blue signal shows the output of [2].
The subject did not move during recordings.

Another major limitation is the long time-window analysis. This limitation transforms
instantaneous heart rate measurement into average heart rate measurement over a large
video sequence. The larger the minimum supported sequence length is the worse is it for
real-world applications, since interesting short-time phenomena, such as sudden heart rate
increase/decrease due to some emotion, could be missed by such analysis.

2.4.1 Heart	rate	features	

In contrast to common computer vision methods, where the features extraction step (e.g.
SIFT) is followed by a problem-specific machine learning approach, a typical pipeline for
remote heart rate measurement includes handcrafted filtering methods. This is because it is
very difficult to define what a good heart-rate feature is.

Usually one of the most desired property of features is some type of invariance, be it color
invariance or scale invariance. However, in case of heart rate features, due to the nature of
the signal, such invariance is not desired. Therefore, a different type of features is required.
To tackle this problem we introduce what we call heart rate features. These features are
invariant to movements and facial expression, while being sensitive to changes in color
caused by heart rate activity.

2.4.2 Heart	rate	sensors	

To tackle the aforementioned difficulties, we treat a face as a set of heart rate sensor where
each sensor conveys the same underlined signal. The benefit of this idea is that each sensor
will capture the noise caused by motions in a different way (Figure 18). Our preliminary
studies have shown that this approach is able to deal with the noise induced by head
motions and the facial expressions. The current plan is to investigate the robustness of the
proposed methodology in the application context of ACANTO.



21

Figure 18: Subject’s motions affect different sensors differently. Therefore, we are able to get a
clean signal by suppressing the contaminated sensors.

2.5 Depth	Cameras	and	Imaging	Sensors	(SIEMENS)	

Perception in 3D is essential to the ACANTO project, both for the environment as well as for
acquiring information about the user. Since a lot of novel sensors/devices are entering the
market we did rate them for applicability to the FriWalk and evaluate their performance in
various experiments. Details on this evaluation as well as a suggestion on the placement of
vision sensors on the walker are given in D3.2.1 “Perception of the Environment
(preliminary):  Preliminary results on visual FriWalk sensing system” which is released
simultaneously with D 3.1.1.
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2.6 Gait	Analysis	(SIEMENS)	

In order to analyze human gait patterns, highly accurate data must be collected at high
frame rates. The state of the art is to deploy a carpet-like structure instrumented with
pressure sensors, which allows for measuring position, orientation and pressure of each foot
at each step. Progress in new technologies has given rise to devices and techniques that
allow for objective evaluation of various gait parameters, resulting in more efficient
measurement and providing specialists with a large amount of reliable information on
patients’ gaits. This reduces the margin of error caused by subjective techniques. Two such
measurement tools commonly used in clinical gait evaluation are force platforms or gait
walkways, the latter being a carpet like structure instrumented with pressure sensitive
elements (sensels). One system that is now in common use is the ‘GAITRite®’ [10][11].

Figure 19: GAITRite® instrumented walkway system (left) and a schematic view of our
instrumented walker (right)

Since such gait “walkway carpets” are highly expensive1 and also limited in length, we
propose an alternative in the form of a wheeled walker equipped with a consumer depth
camera. We have designed and implemented algorithms that derive the same set of
parameters from the depth data as in a gait walkway system, however without the need for
the physical presence of a walkway carpet. Moreover, we are able to provide additional
information, due to continuous observation of the gait cycle, i.e. not only when the user steps
on the ground. In order to retrieve actual foot pressure information, we use a shoe insole
sensor (i.e. Moticon).

A detailed technical description can be found in the Annex of this deliverable in a paper that
has been accepted for presentation at the TechAAL 2015. In addition prior to the publication
an invention report has been submitted.

2.6.1 Experimental	results	
Typical output produced by our system is shown in the subsequent figures. Figure 20 shows
that the same data is generated as in the physical gait walkway in Figure 19, i.e. the feet’s
position, orientation and pressure distribution at each step. While the figure only shows a
short sequence, every step the user takes is visualized and the data is stored to disk for
further analysis. Figure 21 shows a sample trajectory of the foot tips. It illustrates how our

1 1 According to a desk search on various vendors between 25k€-50k€.
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system is not only capable of generating data at each step on the ground, but also during the
swing phase.

Figure 20: "Virtual Walkway" result sample. The Moticon pressure information is visualized for
each step in colors

Figure 21: Sample Trajectory of the Foot Tips

The algorithms in Section 5 are designed with a strong focus on speed, which makes it
possible to achieve the desired frame rate of 15-20 Hz on a single Intel®-i7 CPU core using
a depth map resolution of 640x480 pixels. If higher frame rates are required, the depth map
can be sub sampled to around a quarter of the resolution without influencing the results,
making frame rates at around 30 Hz possible.

In order to estimate the accuracy of both position and orientation, we performed an
extensive evaluation using the Microsoft® Kinect™ sensor. For ground truth generation, we
printed several identical feet patterns and placed them at different positions and angles
behind the walker. Since absolute trajectories and positions are not relevant for gait analysis,
but only the accuracy at each single step matters, we measure relative angles between the
patterns and the distances between the foot tips.
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As shown in Table 10, the average position accuracy turned out to be slightly less than 3
mm, evaluated in 20 measurements. The error is independent of the step length. Part of the
deviation can be explained by the average 3D point resolution of ~1.5 mm and minor
inaccuracies at ground truth capturing.  Table 11 shows the results of the angle accuracy
evaluation. The error increases with the angle, mainly due to occlusions. However, at typical
angles when walking (0-15°) the average error of 1.6° is only slightly higher than the ground
truth accuracy.

N µerror Mederror σerror

20 2,96 mm 2,93 mm 1,68 mm

Table 10: Position Accuracy

Angle N µerror Mederror σerror

0°–15° 40 1,62° 1,39° 1,17°
15°-30° 40 2,26° 1,86° 2.05°
30°-45° 40 3,16° 2,86° 2,18°

Table 11: Angle Accuracy

For comparison, we have evaluated the accuracy of an inertial measurement unit (IMU),
namely the Inertial Elements Osmium MIMU22BT [12].  Osmium produces MIMUs (multi
IMU) that operate by fusing the measurements of several low cost sensors resulting in
enhanced measurement performance. The Osmium MIMU22BT is closely related to the
OpenShoe project, an open source foot-mounted inertial navigation system (INS) [13]
initiative.  We used OpenShoe scripts for data acquisition. While manual calibration can be
performed for each individual device using a special calibration object, we used the
manufacturer default calibration for practical considerations regarding a potential later
deployment, i.e. for being applicable for our target group simplicity in deployment is a factor
of high importance.

As shown in Figure 14, the IMU has been attached to the tip of the foot. Table 12 shows the
evaluation results. Compared to our results, it turns out that the angles can be measured
more accurately using the IMU, but the position error is significantly higher.

Figure 22: IMU attached to the tip of the foot.

µPosition MedPosition σPosition µAngle MedAngle σAngle
7,3 mm 6,0 mm 6,6 mm 0,65° 0,50° 0,50°

Table 12: IMU Evaluation Results
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2.7 FriWalk	Body	Detector	Module	(FORTH)	

The user perception modules on board the FriWalk must provide detailed information about
the user in real time. Information such as the body posture, stability and gait of the user are
valuable for both the clinical functions as well as the accident prevention and guidance
capabilities of the device. As part of the user perception modules, FORTH has already
developed and is currently improving a human body detector algorithm that can provide
articulation information from marker-less visual observations obtained by a depth sensor.
The method may operate with input provided by any of the on board depth sensors, mounted
in the front and the back of the walker. Depending on the sensor used and on the distance of
the user from the camera, the method can detect the user and estimate the 3D pose of
either the full or the upper part of his/her body (up to 4 meters away). This capability enables
the FriWalk to monitor the user's upper body while using the device and facilitates the
implementation of clinical exercises and exergames.

Because of its high theoretical and practical interest, human motion capture based on vision
has been the theme of numerous research efforts. The interested reader is referred to
[15][16] where extended surveys are provided. More recently, Chen et al. [17] surveyed
methods for human motion estimation based on depth cameras. Detecting the full
articulation of the human body from visual observations is considered to be a difficult
problem because of its high dimensionality and the variability of a body regarding
appearance, dimensions, etc. A number of practical approaches simplify or even avoid these
problems by using expensive, special hardware and/or by being invasive, e.g. by requiring
that special visual or other markers are carefully placed on the human body to be tracked
[14]. On the other hand marker-less human motion capture techniques may be classified into
two broad classes, the bottom-up and the top-down ones. Bottom up methods
[18][19][20][21][22] extract a set of features from the input images, and try to map them to
the human pose space. This is achieved with a learning process that involves a typically
large database of known poses that cover as much as possible the whole human poses
search space. Top-down approaches [23][24][25][26][27][28] use a fully articulated model of
the human body and try to estimate the joints angles that would make the appearance of this
model fit best the visual input. The model is usually made of a base skeleton and an
attached surface. A typical top-down method consists of generating hypotheses and
comparing them to the input visual data. The comparison is performed based on an objective
function that measures the discrepancy between a pose hypothesis and the actual
observations. The main advantage of top-down methods is their extensibility. The employed
model can be changed easily, and the whole search space can be explored without any form
of training. The price to pay for this extensibility is the computational cost of the online
process. Due to their generative nature, most of the computational work needs to be
performed online. Two more shortcomings is the requirement for knowing the body model
parameters of each individual and the requirement of providing an initial pose to be tracked.

According to the previous categorization, the method presented in this report is a hybrid with
both top-down and bottom up elements. More specifically, hypotheses about 3D body parts
are computed in a bottom-up approach but then refined and evaluated in a top down fashion.
Moreover the presented method does not rely on tracking as most top-down approaches,
and can perform body pose detection from single frames. FORTH's Body Detector has a
number of important properties that are summarized as follows:

§ performs accurate markerless detection of the human body in 3D

§ achieves real time performance on a conventional computer

§ requires simple inexpensive sensory apparatus (RGBD or depth camera)

§ exhibits robustness in a number of challenging conditions (illumination changes,
environment clutter, camera motion, etc)
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§ has a high tolerance with respect to variations in human body dimensions, clothing,
etc. and

§ can work in different modes such as upper body or full body configurations, thus it
can perform even when the user is sitting or partially occluded.

The method employs a 3D articulated skeletal model of the human body. An illustration of
this model is provided in Figure 23. This 3D model encapsulates information about the 3D
positions of the human head, neck, shoulders, elbows, wrists, hips and legs as well as of the
body center. For the purposes of the analysis, the body 3D model is hierarchically
decomposed to the main body part B consisting of the head, shoulders, body center and
hips and the limbs (arms and legs). A set of nine parameters (d1-d9) controls the sizes of
body parts. The left/right symmetry of the human body is taken into account.

Figure 23: Body model and articulation.

The head is modeled as a spherical object centered in the head position. Arms are
represented by two axis revolution volumes centered onto the shoulder-elbow and elbow-
wrist 3D lines. The same applies to the body (neck, center, hip points). All model parameters
related to sizes (length and radius of primitives) can assume values in predefined, broad
ranges that cover most of the variability of human bodies, and are computed online. Several
relations among these parameters are known because of anthropometric studies and taken
into account in the estimation process. Thus, the evaluation of one parameter provides
constraints on others.

The main steps of the method are shown in Figure 24. Starting from a raw depth map (top
left) we threshold values further than 4 meters. This is required since with the current RGBD
sensors the amount of noise beyond 4 m is significant. The second (preprocessing) step is
to find 2D contours in the depth map, and perform skeletonization by applying erosion. The
result of this process is a mask shown the top middle of the figure. Candidates for limb
positions are then extracted from the preprocessed depth as well as the head position (top
right). The candidate limbs and head position provide constrains for the body model. A final
optimization step fits the body model to the input data. The best fitting candidate pose is
shown super imposed in the RGB input on the bottom.
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Figure 24: Skeleton detection steps. Starting from the raw depth map (top left)
to the full body pose (bottom).

The method was tested in a number of scenarios where the user is either sitting or standing
in front of the sensor. Figure 25 shows upper body detection with 3 different users with
significantly different body shapes. From left to right, the input RGB image (left), the upper
body model (middle) and the input depth map with the skeleton super imposed (right).

Typical results from the full body tracking are shown in Figure 26. The images shown are
part of a dataset that was captured using the front mounted RGBD sensor of a DALi C-
Walker. The position of the camera will be similar on the FriWalk platform. The body pose
detection can provide results even if some body parts are not detected as long as the head
and shoulders are visible. On the bottom left of each image the side view of the skeleton is
shown.
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Figure 25: Upper body pose detection with different subjects.

Figure 26: Full body pose detection.
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2.8 Conclusions	on	User-Centric	Sensing	

At the moment there is not a clear preference towards a specific COTS wearable device
since all of them have some drawbacks, in particular with respect to continuous (real-time)
data gathering and data synchronization, since the devices tend to report averaged values.
On the other hand the market of wearables is continuously evolving and thus it is a good
thing to have a wearable included in our system concept to allow for ongoing data
acquisition even in the absence of the FriWalk as well as being able to measure aggregated
values like the “resting heart rate”.

This leaves room for tailored sensing on the FriWalk and requires research work to be
carried out. Some approaches have shown to be rather promising like non-contact pulse
measurement, gait analysis on the move and body pose detection. Other techniques like the
non-contact respiration pattern measurement via radar failed to convince and does not seem
applicable in the context of ACANTO.

Another system component that appears promising is the shoe insole sensor since it can
reveal information about the stability of the gait that is not trivial or even impossible to access
otherwise. However the deployment of such device in a later application scenario is more
challenging than a sensor systems attached to or integrated into FriWalk. Hence it remains a
topic for the future if such a device will be included in the final workflow (or selectively e.g.
for instance in clinical applications) or it will mainly serve as ground truth reference like the
Hexoskin smart garment.
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Chapter	3	
User	state	modelling	(Siemens)	

In this chapter, a first concept of the modelling architecture of the user state will be
presented. Its hierarchical structures comprises of three levels of modelling (see Figure 27):

- The quantities of level 1, “Vigilance”, “Activity index” and “Stress”, are directly
derived from the measurements discussed in chapter 2

- Level 2 is a semi-meta level: “Medical indication” and “Emotional balance” are
calculated both from measurements and level1 quantities

- “Overall Wellness” is on level 3, a meta level, where all inputs are taken from
previously calculated quantities

The different levels are presented in detail in the following subchapters.

Figure 27: General model architecture of the user state model, which consists of three levels: the
quantities “Vigilance”, “Activity index” etc. are classified according to the origin of their input
parameters. Level 1 means a direct calculation from measurements, Level 2 a calculation with
both measured and previously calculated input, and Level 3 a calculation of previously calculated
values only.

3.1 Level	1:	“Vigilance”	–	“Activity	Index”	–	“Stress”	

3.1.1	 Activity	
Activity is strongly correlated to general health and thus should be greatly encouraged: e.g. it
prevents cardiovascular diseases [29] and correlates with lower numbers of obesity [30] and
general mortality [31]. Due to its paramount importance, we define the “Activity index” as a
crucial field of the ACANTO user state modelling.	

The input factors for the calculation of the “Activity index”  are  “Time active”,  “Floors”,
“Steps/Distance” (measured by the fitness tracker) and “Heart rate” (see section 2.4). In a
first approximation, the “Activity index” will be measured in kilocalories burned by conducted
activities. See Figure 28 for a graphical representation.
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Figure 28: Sub-model architecture for the field “Activity index” of Level 1, which calculates from
the quantities “Heart rate”  (small  impact),  “Time active”,  “Floors” (medium impact), and
“Steps/Distance” (high impact) of model Level 1.

Figure 29: Sub-model architecture for the fields of Level 1, “Vigilance” and “Stress”: the former
calculates from the quantities “Sleep quality”, “Mood”, “Activity index” (small impact), “Body pose”
(medium impact), “Blinking rate”,  “Gait analysis” (high impact); the latter calculates from “Heart
rate”,  “Activity index” (small impact), “Resting heart rate”,  “Mood”,  “Hours of sleep” (medium
impact), and “Sleep quality” (high impact).
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3.1.2	 Vigilance	
“Vigilance” is another important field for the ACANTO project: An alert client perceives his
environment better and suffers from fewer accidents. See Figure 29 for a sketch of input
parameters.	

“Blinking rate” is a proper means of measuring fatigue [32]. Within the project, this quantity is
determined by the camera system. “Sleep quality” represents an important input quantity for
“Vigilance” as it highly affects sleepiness and fatigue [33]. We define little change in “Mood”
over time as indicator for decrease in “Vigilance”. In a similar way, little change in “Body
pose” might also be due to reduced “Vigilance”. “Gait analysis” in general and the heel
height during the single steps in particular might indicate psychic and psychical fatigue. We
also see “Activity index” as a notable input factor for “Vigilance”.

3.1.3	 Stress	
Lazarus defines: “Stress arises when individuals perceive that they cannot adequately cope
with the demands being made on them or with threats to their well-being” [34]. Stress is
commonplace in today’s life; exceeding arousal is linked to cardiovascular disease, cancer,
arthritis, and major depression [35].	

Stress and an elevated “Resting heart rate” (measured by the fitness tracker) are linked [36]
and a high resting heart rate itself correlates with many kinds of mortality [37][39]. “Resting
heart rate” is a long-term quantity, whose values must be observed over weeks. We define
the current “Heart rate” as another input for stress. Unlike the “Resting heart rate”, it can be
seen as a short-term quantity indicating current stress situations.

Stress is associated with sleep disorders in two ways: stress provokes sleep disturbances,
and disturbed sleep provokes stress and increases risk e.g. for cardiovascular disease [40].
Both “Hours of sleep” (about 6-9 hours per night [40]) and “Sleep quality” have to be
considered [33]. In [38], sadness, lack of vigor, egotism, and social affection are linked to
sleep deprivation. Another input factor for the field “Stress” is “Mood”, which is investigated
via the camera system. Excess of activity (measured as “Activity index”) might lead to
“Stress” as well.

3.2 Level	2:	“Medical	indication”	–	“Emotional	balance”	

3.2.1	 Medical	indication	
“Medical indication” is defined as a short-term field and may trigger a warning to caregivers.	

We define small values of “Vigilance”, high levels of “Stress”, or rapid alterations of “Body
pose” and “Heart rate” – including superposition of these quantities – to possibly trigger a
warning; see Figure 30 for a graphical representation.

3.2.2	 Emotional	balance	
We define “Emotional balance” as a feeling of personal well-being without considering short-
term “Medical indication”. See Figure 30  for the corresponding sub-model architecture.	

We proclaim that alertness (“Vigilance”) correlates with “Emotional balance”. The positive
influence of activity (“Activity index”)  on  “Emotional balance” is widely accepted [41].
Improvement of cognitive function in older adults [42] and reduction of depressive symptoms
[43] serve as examples here. “Stress” also influences “Emotional balance” [45]. Poor “Sleep
quality” was significantly correlated with increased physical health complaints and with
increased feelings of tension, depression, anger, fatigue, and confusion” [33].
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Figure 30: Sub-model architecture for the fields of Level 2, “Medical indication” and “Emotional
balance”: the former calculates from the quantities “Body pose”,  “Heart rate” (medium impact),
“Vigilance”,  “Stress” (high impact); the latter calculates from “Activity index” (small impact),
“Vigilance”, “Sleep quality” (medium impact), and “Stress” (high impact).

3.3 Level	3:	“Overall	wellness	factor”	

As depicted in Figure 27, the “Overall wellness factor” comprises of the fields “Medical
indication”  and  “Emotional balance” and represents a meta-quantity of the complete
ACANTO user state model.
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Chapter	4	
Platform	localization	(UNITN)	
	
4.1		 Overview	

Localization is essential to support navigation of FriWalks and robotic vehicles in general
[46]. Usually, localization relies on both relative and absolute measurement techniques. In
addition, sensor data fusion algorithms are commonly used to combine the benefits of both
approaches [47]. The relative localization techniques measure the spatial and/or angular
displacement of a robot or a vehicle with respect to a given initial position and/or attitude.
Typical examples are the so-called dead reckoning methods based on odometers (for
wheeled devices) or Inertial Measurement Units (IMU) [48]. The advantage of such
techniques is their ability to self-measure the relative position and attitude of a robot at a low
cost and at a high rate. Unfortunately, they also suffer from unbounded uncertainty
accumulation and, particularly, systematic drifts. Moreover, the initial values of position and
attitude are usually unknown.
On the other hand, the absolute localization techniques estimate the position and/or the
attitude of a target within a global reference frame. The main advantage of such techniques
is that the positioning and attitude uncertainties remain bounded whenever measurement
data are available. However, multiple systems in the environment or a monitoring
infrastructure are needed to locate the target. Therefore, various problems of cost, detection
range, communication bandwidth, robustness and scalability may arise. In the case of
outdoor vehicles, absolute localization is generally provided by the Global Positioning
System (GPS). In addition, the absolute robot heading can be measured through a
magnetometer used as compass. However, both GPS receivers and magnetometers can be
hardly used indoors.
For all the reasons above, different measurement techniques as well as various ad-hoc data
fusion strategies have been developed to estimate the position of multiple FriWalks in indoor
environments. In particular, the overall localization strategy is twofold and consists of various
functional blocks, as shown in Figure 31. In fact, localization relies on both local position
values estimated by each FriWalk, and data from (or relative to) other robots (also referred
to as agents in the following), whenever they are available. Locally, each FriWalk is
equipped with a set of propriosensors that allows the robot to self-estimate its own position
autonomously. In order to keep position accuracy steadily within ±1 m, two position
estimation algorithms have been developed and compared, i.e. an Extended Kalman Filter
(EKF) and an Extended H∞ Filter (EHF). Both algorithms stem from the general idea of
merging vision-based measures and dead reckoning techniques. Indeed, if the landmarks
are easy to detect and if their density in the environment is reasonably low, the data fusion of
vision-based measurements and dead reckoning is a viable solution to achieve accurate,
scalable and trustworthy localization [49], [50]. In the framework of ACANTO a coarse-
grained grid of landmarks consisting of Quick Response (QR) codes stuck on the floor is
actually used. The main advantage of using QR codes as landmarks is that both absolute
position and heading can be measured in one shot and with the same delay, thus assuring
good temporal data alignment.
The idea of using and comparing the performances of EKF and EHF is due to the fact that
the vision-based position and heading measurement errors do not meet the typical
assumptions of Kalman filters, since such errors are not white and normally distributed. As a
result, the EKF is no longer optimal and its accuracy becomes hardly predictable. On the
contrary, the EHF does not requires any a-priori knowledge of either noise distribution or
shape of the power spectral density. Also, an EHF is purposely designed to minimize the
worst-case estimation error. The difference between both approaches and a performance
comparison based on experimental data is reported in Section 4.2.
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It is important to emphasize that, when multiple FriWalks are present in the same
environment, localization requirements become stricter than in the case of a single agent
(i.e. within ±50 cm), since the position errors have to be small enough to prevent collisions
between different walkers.
In order to achieve such a challenging goal, a collaborative localization approach is
envisioned. The basic idea is to exploit the intrinsic social nature of the FriWalks. Byy
sharing the information of their position in a common reference frame and by measuring the
distance and/or the relative orientation between pairs of nearby agents, the position of each
user can be refined. To this purpose in Section 4.3, it is explained how the local estimators
can be enhanced to include the mutual information between pairs of agents. Also, two
different inter-robot relative measurement schemes will be analyzed and compared through
simulations, i.e. using either a large number of highly probable and low-accuracy wireless
distance values or a small number of vision-based (and more accurate) pose measures.

4.2 					Self-localization	of	a	single	agent
4.2.1 System	and	measurement	models	
A qualitative overview of the self-localization mechanism of a single agent is shown in Figure
32. A FriWalk equipped with two encoders, a gyroscope and a front monocular camera must
be able to estimate its own position within a reference frame <W>={Xw, Yw, Zw}. The robot's
generalized coordinates at time kTs (Ts being the sampling period) compose the state vector
pk = [xk, yk,	θk]T, where (xk, yk) are the planar coordinates of the mid-point of the back wheels
axle (in the following simply referred to as reference point for brevity) and θk is the heading
of the robot with respect to Xw. The FriWalk dynamic can be modeled as a unicycle-like
vehicle, i.e.

( )
( ) kkk

kkkkk G
ηpoz

εupp
+=
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where [ ]Tkkk s dqd ,u =  is the input vector including the linear and angular displacements of the
vehicle between (k-1)Ts and kTs, kε  is the vector including the respective zero-mean noise
terms (assuming that possible systematic offsets are reasonably estimated and
compensated),

Figure 31: Block diagram of the overall localization strategy developed for the
ACANTO FriWalks. The collaborative measurement unit is active only when multiple
agents are present in the same environment.
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( )kpo  denotes a generic nonlinear output function of the state and kη is the vector of the
zero-mean uncertainty contributions, when the output quantities are measured.
If the position of a robot that started from a known location is estimated by integrating the
wheels displacements measured by the encoders, the accumulation of both imperfectly
compensated offsets and random noise unavoidably leads to large position and heading
errors after a while. In order to mitigate this problem, two measurement systems are
included in the FriWalk, i.e.

· A vision system consisting of a monocular front camera;

· A gyroscope-based platform.

The role of the vision system is to detect one of the QR codes stuck on the floor. To this
purpose, the field of view of the camera has to be slightly oriented towards ground in order to
ensure a front reading range of at least 1 m. One of the main advantages of using QR codes
is that they can be robustly identified in the environment. Also, various open-source libraries
and algorithms are available to read such codes (e.g. Zbar) and to measure both the
distance of a detected landmark from the camera and its orientation angle with respect to the
optical axis [52]. In the following, for the sake of simplicity, but without loss of generality, it
will be assumed that the distance D between pairs of adjacent QR codes is constant, as
shown in Figure 32. Each QR code represents a number which corresponds to a triple of
values, i.e. the planar coordinates (xq, yq) of the point in the center of the landmark, and its
orientation angle θq with respect to Xw (by default, θq=0).

As soon as the q-th QR code is recognized, the values of xq, yq and θq are extracted from a
list of QR code numbers stored in the memory of the platform running the localization
algorithm. This approach is very flexible, since the same QR codes can be used in different
environments by simply remapping the numbers in the list. Also, in this way just low-
resolution (e.g. 8-bit) numeric-only codes can be used. As a result, the probability of correct
code detection is higher even at larger distances. With reference to Figure 32, let Δxc and
Δyc be the distances between the camera and the detected QR code in the camera frame,
namely along its optical axis and the orthogonal direction parallel to ground, respectively.
Also, let Δθc be the angle difference between the camera optical axis and θq. The values of

Figure 32 – Overview of the localization mechanism of a single agent within the fixed reference
frame <W> = {Xw, Yw, Zw}.
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such quantities can be measured using standard image processing algorithms, e.g. based
on homography [53]. If the points of the landmark to detect are coplanar (like in the case of
the QR codes) and if the geometrical dimensions of such codes are known a-priori, the
homography-based techniques ensure a robust estimation of Δxc, Δyc and Δθc, regardless of
the actual position and orientation of the camera. If x

cc xx h+D=Dˆ , y
cc yy h+D=Dˆ  and

qhqq +D=D ccˆ  denote the measured quantities, the distributions of uncertainty terms xh , yh

and qh  depend on the combination of a multitude of phenomena such as possible camera
calibration errors, algorithm-specific uncertainty contributions introduced by the image
processing stage, intrinsic pose errors of the landmarks and, last but not least, random
latencies due to the fact that images are processed while the robot is moving. The relative
position and angle measurements obtained from the vision system are inherently event-
based. In fact, only when one of the QR codes is in the field of view of the camera, the
related information is available. So, not only is the detection rate random, but it is also a
function of the density of the landmarks in the environment. Given that ensuring high-rate
and good heading estimates can greatly improve localization accuracy in the long term [54],
an additional gyroscope-based platform can be used. As known, the angular displacements
around a given rotation axis can be obtained by simply integrating the values measured by a
gyroscope (around the same axis) over time. This approach generally also suffers from
uncertainty accumulation. However, the vision-based angle measurements can be used in
an additional EKF to adjust the yaw angular displacements resulting from the integration of
gyroscope data, thus keeping the total heading uncertainty bounded. For the aims of
ACANTO, potentially the rotation axis of the gyroscope should be orthogonal to ground, i.e.
parallel to Zw. If this is not the case, the angular velocity components measured by a triaxial
gyroscope in its own reference frame have to be properly combined so as to compute the
components in frame <W>. This requires estimating the attitude of the gyroscopic platform
within <W>. Such attitude estimates can be obtained by means of an EKF in which the
direction of the gravity vector is measured by a triaxial accelerometer while the direction of
magnetic north is determined by a triaxial magnetometer. The details of this approach are
explained in [55]. Therefore, in the following, it will be simply assumed that the angular
velocity component along Zw is measured as described in [55]. It is important to emphasize
instead that the potential poor accuracy of magnetometer measurements in indoor
environments is not an issue in the case at hand, since it does not affect the angular velocity
component along Zw.

4.2.2 Local	position	estimation	algorithms
The heterogeneity of the chosen sensors as well as the adopted nonlinear system model
require an efficient algorithm to coherently fuse the available data and to achieve the best
possible estimates of the elements of pk in (1). As explained in Section 0, the successful
application of Kalman filtering techniques depends on the fulfilment of prerequisites on
process and measurement noises, regardless of the linearity of the underlying system. More
precisely, such noises should be white and normally distributed with zero mean and known
covariance. Such hypotheses are hardly verified in real scenarios, particularly for the case at
hand. In addition, the hypothesis of white noise is evidently not valid for the heading
measurements resulting from the gyroscope-based EKF shortly described in the previous
section, since the estimated values are highly correlated. In this kind of situations, H∞ filters
can improve robustness to unmodelled noise and dynamic phenomena. In order to highlight
the differences between the EKF and the EHF based on the same system model (1), both
solutions are described and compared in the following.
As far as the EKF is concerned, it can be easily shown that the equations of the prediction
step are
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where kp̂ and +
+1kp̂ denote the estimated and predicted state, respectively, kP and +

+1kP  are
the corresponding covariance matrices, Fk is the Jacobian of the system model (1) with
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respect to p and computed at kp̂ , Gk is defined as in (2), and, finally, Qk is the covariance
matrix of the process noise εk mainly due to encoders. If we refer to Ok+1 as the Jacobian of
the output function o(·) in (1) with respect to p and computed at +

+1kp̂ , then the Kalman gain
of the EKF is
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where Rk+1 is the covariance matrix of 1+kη . Observe that the size of both Ok+1  and Rk+1

depends on whether a QR code is read or not. In the former case, Ok+1 is a 3x5 matrix, while
the size of Rk+1 is 3x3. In the latter case, Ok+1 is a 1x5 row vector and Rk+1 is a scalar. Of
course, the size of the observation vector zk+1 changes as a function of the available
measures as well. Nonetheless, in both cases the update step equations of the EKF are
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As far as the EHF is concerned,  this results from the minimization of the following cost
function [51]:
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where P0, Qj, Rj, and Lj are positive definite weighting matrices which should be chosen
appropriately. In general, the exact solution of the optimization problem above is not
tractable. Therefore, in practice it is preferable to compute the minimum of (6) such that

2g<Jksup , with γ being an arbitrary given boundary. In fact, the optimal solution to this
constrained optimization problem is  easier to find. By following the steps of the algorithm
proposed in [56], it can be indeed shown that the prediction equations are the same as (3),
whereas the equations of the update step become
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where the H∞ gain is computed as in (5) and
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This way of formalizing the EHF makes its representation very similar to an EKF, although its
computational cost is higher. However, Qk and Rk are no longer required to be the
covariance matrices of the process and measurement noises, respectively. In fact, they can
comprise arbitrary user-defined weights, with the only constraint that both matrices have to
be positive definite. If some a-priori knowledge is available, Qk and Rk can be used to
leverage the importance of different kinds of noise. Nonetheless, it is worth emphasizing that
if Qk and Rk coincide with the covariance matrices of process and measurement noises,
respectively, and if Lk is equal to the identity matrix, then the EHF tends to become an EKF
when γ→∞.
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4.2.3 Implementation	and	results

The behavior of both kinds of filters has been evaluated and compared using several records
of data collected on the field using a preliminary prototype of the robotic walker. The wheels
of the prototype are equipped with two incremental optical encoders CUI Inc. AMT10X with a
best nominal accuracy of ±15 arcmin at the highest possible resolution (i.e. 2048 PPR). The
robot’s wheels radius is 10 cm and the axle length is 59 cm long. The adopted gyroscope is
a triaxial Inversense IMU-3000 with a resolution of 16 bits and a declared rate noise spectral
density of 1.74·104 rad/s/√Hz. The attitude of the gyroscope within frame <W> is obtained as
described in [55], by using a 14-bit triaxial accelerometer Bosch BMA180 to estimate the
direction of Zw, and a 12-bit triaxial magnetometer Honeywell HMC5883 to estimate the
direction of Xw. Both encoders and gyroscope data are collected via CAN bus at 250 Hz (i.e.
with period Ts = 4 ms). The front camera is a simple 640x480 PSeye RGB webcam
connected to the processing platform through a USB port. The camera is placed at a height
of about 80 cm and 60 cm ahead of the reference point (namely the wheel’s axle midpoint)
along the longitudinal axis of the robot. The processing platform is an Intel Barebone mini
desktop (of size 11.7 cm x 11.2 cm x 3.9 cm) provided with 8 GB of DDR3 RAM, a 2.80-GHz
Intel Core i5-3427U processor, a 120-GB solid state drive and Linux embedded. The
processing platform is powered by a rechargeable 118-Wh lithium-ion accumulator.
Landmark recognition is implemented in C++ using the primitives of the OpenCV library. The
open-source Zbar library is used instead for QR code detection. Both the EKF and the EHF
filter are implemented in C.

Some experiments were conducted in a large room of about 300 m2 in the basement of the
Department of Industrial Engineering of the University of Trento. The room was instrumented
with QR markers put on the floor at distances D=1, 2, 3 or 4 m from one another. About 40
experiments of different duration were conducted with the FriWalk prototype pushed at
various speeds and along different routes, both throughout the empty room and with some
obstacles on the way to emulate realistic scenarios. In order to evaluate the accuracy of the
position tracking technique, a laser scanner SICK S300 Expert was placed in the origin of
reference frame <W> (i.e. in one corner of the room) to measure the coordinates of the user
along each route in real-time.

Figure 35 shows the 95th percentiles of the estimation errors of state variables x (a), y (b)
and θ (c) obtained using the EKF and the EHF, respectively, with QR code grids of different
granularity. Of course, as the distance D between landmarks grows, the estimation errors
tend to increase considerably, as the probability of detecting a landmark along the way
becomes significantly smaller. Observe that in all conditions, the accuracy achieved with the
EHF is higher than with the EKF. In particular, in order to have a positioning error within ±1
m with about 95% probability, the distance D between pairs of adjacent landmarks must be
at least 2 m. In this case, the accuracy improvement obtained using the EHF is between
20% and 25% for state variables x and y, while it is about 10% for variable θ.
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(a)

(b)

(c)
Figure 33: 95th percentiles of the estimation errors of state variables x (a), y (b) and θ (c) obtained
using the EKF and the EHF, respectively, in about 40 experiments, for different values of the distance
D between pairs of QR code landmarks.
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4.3 Collaborative	localization	

As explained in Section 0, the accuracy of the self-localization performed by a single agent,
even if it plays an essential role for most of the functions of the FriWalk, could be not good
enough to support the simultaneous and coordinated maneuvering of different robots in the
same room. In order to tackle this problem, the possibility of using collaborative localization
has been investigated both analytically and through some preliminary simulations. Till now,
all efforts have been focused on the idea of injecting mutual inter-robot measurements in the
update step of each EKF in order to turn them into a distributed and interlaced EKF (IEKF)
[57]. A similar approach could be potentially applied also to the EHF. However, its complex
theoretical formulation and possible stability issues require a longer dedicated study, which
will be performed in future if needed.

4.3.1 Problem	formalization
For collaborative or synergic localization of a team of agents we mean the ability to refine the
position and the heading estimated by each agent in a common reference frame by using
both local positioning data and relative distance and/or orientation measures between pairs
of devices. The main assumptions underlying a proper formalization of this problem in the
specific context of the ACANTO project, are summarized below.

1. The N agents can move freely in a large room. In other words, the dynamic of each
agent does not depend on any other agent, since each user may act independently.
The only constraint to FriWalk motion is collision avoidance.

2. The state of each agent i (with i=1,…,N) at time kTs is represented by vector
pk

(i)=[xk
(i), yk

(i), θk
(i)]T, where xk

(i), yk
(i) and θk

(i) are defined like in (1).
3. Each FriWalk is able to estimate its own state autonomously as explained in Section

4.2.
4. Besides the sensors used by each robot for its own local state estimation, every

FriWalk is supposed to be equipped with two alternative types of exteroceptive
sensors to be used explicitly for collaborative localization, i.e. an omni-directional
wireless ranging system (case A) or a front stereo vision system (e.g. a Kinect) (case
B). Both cases are qualitatively shown in Figure 36 (a) and (b), respectively. In case
A the ranging system is used to measure just the distance between the FriWalk and
any other agent located within an (approximately) circular range. On the contrary, in
case B the Kinect is employed to recognize and to measure the relative position and
orientation between the FriWalk and any other agents located within both a given
horizontal angle of view and a known min-max range.

(a) (b)
Figure 34: Qualitative overview of measurement techniques used for collaborative localization
of multiple FriWalks, i.e. omni-directional wireless ranging systems (distance measurement
only) (a), Kinect cameras measuring the relative position and orientation of two devices (b).
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5. All agents are equipped with a radio transceiver ensuring complete connectivity
between any pairs of robots as well as high-rate and low-latency communication.
Long Term Evolution (LTE) wireless modules can indeed meet such general
requirements [58].

By extending model (1), the overall state transition of all agents in the chosen reference
frame can be described by the following non-linear discrete-time system [59], i.e.
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where each term of the block diagonal matrix in (9) describe the dynamic of one of the N
FriWalks in the room. If we assume to have inter-robot mutual measurements, the
observation model associated to system (1) includes two types of output functions, i.e.

· the geometrical relationship between the position/orientation of each agent and
those of one of the detected visual landmark in a common reference frame;

· the geometrical relationship between the pose of each FriWalk and those of the
other N-1 agents in the room.

As a result, the overall observation equation at time kTs becomes
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is the vector including all observations performed by agent i. Observe that the i-th function of
the vector, referred to as o(·), is the same as in (1) and it is different from the other elements,
as it depends on the geometrical relationship between the position/orientation of each agent
and those of the detected QR code. On the contrary, each function h(·,·) consists of M
equations and depends on how the state variables of agents j = 1,…,N, for j≠i are actually
observed by the i-th robot. In the following, it will be assumed that while o(·) is the same in
all conditions (see assumption 3), the equations of h(·,·) differ in case A and case B,
respectively, in accordance with assumption 4.
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4.3.2 Collaborative	position	estimation	algorithm
The nonlinear model based on expressions (9)-(10) can be used to implement an estimation
algorithm similar to the IEKF presented in [59]. Since the state evolution of each FriWalk
does not depend on the state of the other robots, the prediction step equations of the IEKF
are straightforward, as they basically coincide with those of N independent EKFs, i.e.
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where the meaning of all symbols is the same as in (3), but referred to the i-th agent.
Observe that (12) depends just on local quantities. Therefore, the prediction step equations
can be computed locally, i.e. on board of each FriWalk, thus ensuring a fully distributed
implementation.

As far as the update step is concerned, the corresponding equations are different from those
of a standard EKF for two reasons. First of all, due to the definition of the measurement
model (10), the updated state estimate of the i-th FriWalk and its covariance matrix depend
not only on the respective predicted values and on the measurement data, but also on the
predicted state and the predicted covariance of the other agents. Secondly, generally a
FriWalk is not able to observe all the other agents simultaneously and can occasionally miss
landmarks as well. This means that all observations are inherently intermittent, as they
depend on the reading range of the chosen measurement systems and on the distance
between each FriWalk and both the other agents and one of the landmarks. In particular, if
the distance between pairs of adjacent landmarks is larger than the reading range of the
camera, then at most one landmark can be used to update the state of each agent. As a
result of all issues above, in the case considered the update step of the IEKF is inherently
stochastic.

The possibility to implement a local state estimator depending also on the states of other
agents is investigated in [59], and led indeed to the idea of using an IEKF. In essence, this
means that in the computation of the innovation term associated with a generic pair of
agents (i,j), the predicted state of j can be regarded as an additional measure. Therefore,
both ( )j

k
+
+1p̂  and its covariance matrix ( )j

kP +
+1  have to be transmitted to FriWalk i, thus

“interlacing” the two subsystems. In particular, ( )j
kP +
+1  has to be included in the Kalman gain,

as it will be shown in the following, to keep into account the fact that ( )j
k
+
+1p̂  is  affected  by

some uncertainty.

The problem of intermittent observations in the case of a simple KF and the related stability
issues are deeply analyzed in [60]. By extending a similar approach to the system at hand
for each pair of agents i and j, we can define a binary random variable γk

(i,j), which must be
set equal to 1 if FriWalk i is able to observe FriWalk j at time kTs, or 0 otherwise. Similarly,
γk

(i,i) is equal to 1 if FriWalk i is able to detect a landmark at time kTs, or 0 otherwise. Starting
from the basic update step equations of an EKF and assuming to replace the variance of
real measurements with a large dummy value anytime γk

(i,i)=0, after some algebraic steps it
can be shown that if the dummy variance tends to infinity [60], then the update equations of
the IEKF running on agent i become
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where ( )i
k 1+G  is  a M(N-1)+3xM(N-1)+3 diagonal matrix with binary random variables only on

the main diagonal, since all observations can be reasonably assumed to be independent,
( )ii
kH ,~

1+  is the Jacobian of ( )( )×ih~  with respect to p(i) computed at +
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is the Kalman gain of the IEKF running on the i-th agent. Observe that (14) comprises two
measurement covariance matrices instead of just one, i.e. the block diagonal covariance
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matrices associated with the relative pose measurements between each pair of agents (i,j)
and the covariance matrix (4) in position (i,i) due to landmark detection. Matrix ( )i

kS 1+
~  instead

takes into account the covariance matrices ( )j
kP+
+1  of the states predicted by the agents

different from i, with ( )ji
kH ,~

1+  being the Jacobians of ( )( )×ih~  with respect to p(j) computed at +
+1kŝ .

It is worth emphasizing that expressions (12) and (13) are absolutely general, but their
implementation depends on the actual observation model used. With reference to the two
models introduced in Section 4.3.1, in the following we will denote with subscripts A and B all
the quantities which refer to case A and case B, respectively. In particular, in case A,
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with (xq, yq, θq) being the absolute coordinates of the q-th visual landmark. Dually, in case B
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and ( )( )i
kpo  is the same as (16). Notice that both (15) and (16) are nonlinear, but the number

of observations M is different in either case. Indeed, M = 1 in case A (since low-cost wireless
ranging systems can hardly measure the relative orientation between transmitter and
receiver with adequate accuracy), while M = 3 in case B.
A final remark is on communication latency, which may influence measurement uncertainty
significantly, due to the difference between the time when the predicted state of agent j is
sent to agent i and the moment when the relative pose of j is actually measured by i.
However, if assumption 5 in Section 4.3.1 holds, then the impact of possible communication
latencies can be assumed to be negligible, since the FriWalks move quite slowly (i.e. at
about 1-2 m/s).
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4.3.3 Simulation	results	
In order to evaluate the positioning accuracy with and without collaborative localization and
to compare the performances of the two mutual measurement strategies described in the
previous Section, the results of some meaningful Monte Carlo simulations are reported in the
following. The main simulation parameters are listed below and are based on the
specifications of the ACANTO project as well as on the results reported in Section 4.2.3.

· Duration of each simulated path: about 120 s;
· Number N of agents in the room: between 2 and 10;
· Room size: 100 m2;
· Number of random paths for each FriWalk: 20;
· Robots linear velocity range: [0,2] m/s;
· Robots angular velocity range: [-π/2,	π/2] rad/s;
· Sampling period: Ts = 4 ms;
· Covariance matrix of the encoders noise (based on experiments on the field): Qk =

diag(2·10-8 m2; 2.2·10-7 rad2);
· Reading range of the camera for landmark detection: about 1 m with an aperture angle

of about 40°;
· Distance between landmarks: D=2 m;
Covariance matrix of the measurement uncertainty associated with landmark detection
(based on experiments on the field): RA

(i,i)= RB
(i,i)= diag(1.6·10-3 m2; 5.0·10-5 m2; 1.0·10-3

rad2)
· Detection range of the wireless system in case A: about 15 m;
· Rate of wireless distance measurements: about 25 Hz;
· Variance of the wireless distance measurement data anytime agent j is detected: RA

(i,j)

= 0.45 m2, in accordance with [61];
· Kinect reading range (based on specifications): from 0.8 m to 3.5 m with a horizontal

aperture angle of about 62°;
· Covariance matrix of the uncertainty of Kinect-based measurements anytime agent j is

detected (based on experiments on the field): RB
(i,j) = diag(4·10-6d(i,j)4 m2;  4·10-6d(i,j)4

m2; 3·10-4 rad2), with d(i,j) being the actual Euclidean distance between agents i and j.
· Camera and Kinect (case B) image acquisition rate: about 10 Hz.

Figure 33 shows the average root mean square (RMS) estimation errors associated with
state variables x (a), y (b) and θ (c), as a function of the number of agents moving in the
room. Different bars refer to cases A, B and when no collaborative localization is used. The
RMSE values of different paths for different amounts of agents are averaged over their
number N. The reported results show clearly that both collaborative localization strategies
enhance the accuracy in estimating (x, y). Of course, the improvement is more evident when
the number of agents grows, due to both the increment of detection probability and the
availability of a larger amount of measurement data from neighbors. In spite of some
fluctuations due to the limited number of simulated paths, the accuracy in estimating x and y
improves on average by about 0.8% in case A and by 3% in case B every time a new agent
is added into the room. As far as the estimation accuracy of θ is concerned instead, results
are less remarkable. First of all, the use of wireless ranging does not affect heading
estimation accuracy at all, as expected, since no additional information on orientation is
injected into the IEKF in case A. On the contrary, the Kinect-based angle measurements in
case B improve accuracy by about 2% per agent.

In conclusion, the use of Kinects seems to be preferable for collaborative localization in the
considered scenario, despite a very low duty cycle.
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Figure 35: Average RMS estimation errors of state variables x (a), y (b) and θ (c) as a function of
the number of agents present in the room, in case A, case B and when no collaborative localization
is used.
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Abstract 
In order to analyze human gait patterns, highly accurate data 
must be collected at high frame rates. The state of the art is to 
deploy a carpet-like structure instrumented with pressure 
sensors, which allows for measuring position, orientation and 
pressure of each foot at each step. 
Since such gait “walkway carpets” are highly expensive1 and 
also limited in length, we propose an alternative in the form 
of a wheeled walker equipped with a consumer depth camera. 
We have designed and implemented algorithms that derive 
the  same  set  of  parameters  from  the  depth  data  as  in  a  gait  
walkway system, however without the need for the physical 
presence of a walkway carpet. Moreover, we are able to 
provide additional information, due to continuous observation 
of  the  gait  cycle,  i.e.  not  only  when  the  user  steps  on  the  
ground. In order to retrieve actual foot pressure information, 
we use a shoe insole sensor. 
Our experiments show that the system is able to collect gait 
relevant data with sufficient accuracy and frame rates. While 
the feet’s position accuracy depends primarily on the noise of 
the depth sensor and is typically at a precision of less than 3 
mm, the orientation accuracy is around 1-2 degrees for typical 
foot orientations. 

1 Introduction 
Gait analysis is the systematic study of human walking using 
the eye and brain of experienced observers, augmented by 
instrumentation for measuring body movements, body 
mechanics and the activity of the muscles [1]. Changes in gait 
reveal key information of special interest to tracking the 
evolution of different diseases: (a) neurological diseases such 
as multiple sclerosis or Parkinson’s; (b) systemic diseases 
such as cardiopathies (in which gait is clearly affected); (c) 
alterations in deambulation dynamics due to sequelae from 
stroke and (d) diseases caused by ageing, which affect a large 
percentage of the population [3]. Accurate and reliable 
knowledge of gait characteristics at a given time, and even 
more importantly, monitoring and evaluating them over time, 
enable early diagnosis of diseases and their complications and 
help to find the best treatment. Continuous gait analysis can 

                                                        
1 According to a desk search on various vendors between 
25k€-50k€. 

also assess the risk of falling, e.g. stride-to-stride variability 
has been shown to be an effective predictor of falls [2]. 
The traditional scales used to analyse gait parameters in 
clinical conditions are semi-subjective, carried out by 
specialists who observe the quality of a patient’s gait while 
the patient walks. This is sometimes followed by a survey in 
which the patient is asked to give a subjective evaluation of 
the quality of their gait. A disadvantage of these methods is 
that they give subjective measurements, particularly 
concerning accuracy and precision, which in turn have a 
negative effect on diagnosis, follow-up and treatment. 
Progress in new technologies has given rise to devices and 
techniques that allow for objective evaluation of various gait 
parameters, resulting in more efficient measurement and 
providing specialists with a large amount of reliable 
information on patients’ gaits. This reduces the margin of 
error caused by subjective techniques. Two such 
measurement tools commonly used in clinical gait evaluation 
are force platforms or gait walkways, the latter being a carpet 
like structure instrumented with pressure sensitive elements 
(sensels). One system that is now in common use is the 
‘GAITRite®’ [8][9]. Recent advances in robotics make it 
possible to turn a standard assistance device, such as a walker, 
into an augmented device. Thus existing single shot tests can 
be enriched by a new set of continuously measured criteria 
derived from the daily use of standard assistance devices [2]. 
 

 
Figure 1: GAITRite® instrumented walkway system. 

 
In this paper we propose a system that tracks specific 
parameters for biomechanical gait analysis. The system 
consists of a four-wheeled walker (“rollator”) mounted with 



depth-sensors and odometers. In our work the focus is set on 
clinical applications and active living. Actually these two are 
brought together forming a continuum of data acquisition and 
analytics. The clinical application profits from measurements 
in daily life scenarios, which is likely to reduce the bias 
introduced in the clinical environment and vastly increases 
the amount of accessible data. 
 The  main  contribution  of  our  work  is  the  spectrum  of  
information we derive and the “virtual” walking carpet data 
representation without the need for a gait walkway to be 
physically present. Additionally, we provide a real-time 
implementation (15-30 fps) that allows us to support very 
time-constrained algorithms.  

2 Related Work 
Since its beginnings in the 19th century, research on gait 
analysis has centred on achieving quantitative objective 
measurement of the different parameters that characterize gait 
in order to apply them to various fields such as sports, 
identification of people for security purposes, and medicine 
[3]. In our work the focus is set on clinical applications and 
active living.  Clinical evaluation of frailty in the elderly is 
the first step to assess the degree of assistance they require. A 
comprehensive overview of the diversity and plurality of 
sensing modalities in the context of clinical applications is 
given in [3].  Reference [2] specifically raises the question if 
smart walkers can be used for gait monitoring and fall 
prevention. It considers several available smart walker 
implementations and concludes that  standard  biomechanical  
features  such  as  walking  speed,  cadence and step  length  
can  be  estimated  from  observing  rollator  walking while 
“...some other information seems hard to obtained  without 
equipping the user (3D feet positions, force pressure  
distribution on the ground)”.  We are particularly aiming for 
this type of information in our work. 
 More specific references on individual systems in the 
context of an instrumented smart walker relying on a depth 
sensing device (e.g. Microsoft® Kinect™ sensor) are given in 
[4,5,6,7]. These systems do either clearly exceed our real-time 
runtime constraint [5,6] or do not explicitly report on the 
runtime behaviour, which has been a major constraint in the 
development of our system. 

3 Parameters we aim to measure 
We aim to generate all key data generated by a physical gait 
walkway instrumented with pressure sensels as illustrated in 
Figure 1, i.e. the exact placement of the feet on the ground 
including their orientation and the pressure force applied to 
the ground on foot touch. The latter actually changes over 
time from an initial foot contact towards the “toe-off” phase. 
From a representation like this a multitude of higher-level 
semantic information can be derived, e.g. the step and stride 
length, step width and the cadence. However the focus of this 
paper is set on generating the basic information since the 
derivation of the higher-level information is in most cases 
straightforward assuming a sufficiently precise measurement 
of lower-level information. 

In  contrast  to  a  physical  gait  walkway we can  also  track  the  
feet and associated key points on the feet (like the tips of the 
feet) continuously during the whole gait cycle, i.e. including 
the swing phase. This allows for e.g. temporal representations 
of the foot height. 
 
Since we are by no means restricted to a straight walkway due 
to our Ackermann steering geometry in a front wheel steered 
walker we need to derive a strategy on how to visualize 
arbitrarily shaped – and possibly very long – walker 
trajectories. We opted for the following strategy:  
 

 The chosen visualization consists in a non-length 
restricted but straight gait walkway. Since we 
observe the motion pattern of the feet from the fixed 
perspective of the depth camera on the walker, the 
walkway gets linearized implicitly. This strategy is 
driven by the rationale that in gait analysis as 
opposed to odometry, the absolute path taken is less 
relevant but the focus in on the relative and hence 
local motion pattern.  

 However, an increasingly tight curve radius will 
affect the pattern of the feet movements. More 
precisely, this effect will gain the higher the change 
in orientation in the walker is between two 
subsequent steps. Instead of aiming to compensate 
the different curve radii of the inner and outer foot 
we decided just to mark the increment in the walker 
orientation between subsequent foot placements, 
which allows for information filtering in subsequent 
processing. 

4 Our instrumented wheeled walker 
Figure 2 shows the approximate depth sensor position on the 
walker and indicates its field of view. While this sensor is 
mounted on the walker, the insole sensors are worn by the 
user. In this work we rely on a pair of wireless “Moticon 
OpenGo” [10] sensor insoles, as also shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Instrumentation of our wheeled walker (left), 
utilized wireless insole “Moticon OpenGo” sensor (right) 
 
Foot pressure information is mainly deemed to be relevant in 
clinical gait analysis while for continuous everyday 
inspection of gait symmetry and confidence a light-weight 
system without the insole sensor might also be considered a 



viable option, eliminating the need to instrument the user’s 
shoes. However, the insole sensor is mandatory in order to 
cover the full spectrum of data of a physical gait walkway. 

5 Algorithms for parameter retrieval 
The algorithms designed for deriving the desired parameters 
solely rely on the sensor’s depth data, which is represented as 
a depth map. An equivalent representation as a 3D point 
cloud can be obtained by applying 
 
  
  
 , 
 
where d is the depth value at pixel (u,v), fx and fy the sensor’s 
focal length in pixels in x- and y direction, and (cx,  cy) the 
principal point. 
 
5.1 Ground Plane Estimation and Point Cloud 
Filtering 
 
In order to allow for height estimation, the ground must be 
identified to provide a basis. We assume the area around the 
walker to be planar and apply a RANSAC-based [11] plane 
fitting approach to compute the plane parameters. The inlier 
threshold  used  in  the  RANSAC core  is  set  to  a  value  in  the  
proximity of the standard deviation of the sensor noise. 
 
Figure 3 shows the initial sensor coordinate system [x’, y’, z’] 
and the resulting ground plane coordinate system [x, y, z]. All 
3D points are transformed to the plane coordinate system. 
 

 
Figure 3: Sensor and Walker Coordinate System 
 
Depending on the sensor placement, mechanical parts of the 
walker (e.g. the wheels) are visible in the depth map and are 
masked out.  Since one does typically not lift a foot higher 
than a few centimetres during a step, 3D points located higher 
than 15 cm above the ground plane are also removed. Only 
the remaining points are used for the subsequent detection 
algorithms. 
 
 
 

5.2 Foot Cluster Detection 
 
The first step in determining the exact position and 
orientation of each foot is to identify the two respective 
clusters in the point cloud.  This can be complicated by the 
presence of other objects on the ground that the user passes. 
 We use the fact that during walking, the feet are mainly 
oriented towards the walker and therefore visible as clusters 
elongated in the y-direction. All points are projected onto the 
ground plane, which is divided into strips in y-direction, as 
shown  in  Figure  4.  In  each  strip,  clusters  in  x-direction  are  
searched (small yellow dots in Figure 4). Only points without 
a neighbouring, further toward the front lying point with 
similar x-value (~ 5 cm distance) are retained, yielding only 
the foremost points of each cluster (larger, green dots in 
Figure 4). Using this procedure, we are able to successfully 
identify both foot tips, even whether the feet touch (since they 
usually never touch at the very front). 
 

 
Figure 4: Foot Cluster Detection. Left: Other objects  
complicate the detection process. Right: Feet touch, but tips  
can still be identified. 
 
In case there are more than two potential foot tips, we identify 
the correct ones by computing a score for each cluster and 
selecting the ones with the highest values.  
 First, all points that are within ~30 cm from the tip’s y-
value and differ not more than ~7 cm in x-direction are 
selected. The score is then computed as 
 
 , 
 
where Nback is the number of points lying behind the tip 
(higher y-value), Nfront the  number  of  points  in  front  and  a  
weight factor (set to 2 in our experiments). The score is high 
for foot-shaped clusters and low for small clusters, clusters 
that lie behind others or that are only large in x-direction. 
If  the  scoring  does  not  yield  a  clear  result,  we  also  use  the  
position of the feet in the previous frame – if available – for 
correct assignment, by choosing the closest one. 
 
 5.3 Cluster Refinement 
 
The two resulting initial foot positions indicate a rough 
location of the user's left and right foot tip. It is necessary to 
determine all corresponding 3D points for each foot, in order 
to enable estimation of the exact position and orientation. 
Especially  if  the  feet  touch (cf.  Figure  4,  right)  this  is  not  a  



trivial task. The algorithm we designed to solve this problem 
works as follows: 
 
1.) Create a binary image showing all pixels in the depth map 
that correspond to the relevant 3D points. Find connected 
components and check if the initial foot positions are located 
in different ones. If they are, all points within the tip's 
component are selected for that foot. 
 
2.) If the initial positions are within the same component, 
check if the feet can be separated in 3D space by performing a 
flood fill on the relevant part of the depth map. 
 
3.) In case the feet are not separable using the above 
procedures, we seek the "best" cut through the connected 
region. We solve this problem directly in the depth map by 
defining  a  graph,  were  the  cost  of  a  connection  to  the  
neighbouring pixels is the negative depth value at these 
pixels. Therefore, we aim for the path with the lowest 
accumulated height values, which is most likely the correct 
cut due to the shape of the feet. The starting point for the cut 
is the foremost position where the feet touch. In order to make 
the algorithm more robust, we accumulate the depth values of 
several pixels in each direction before deciding which 
direction to move to. 
 
Figure 5 illustrates how each of these steps can assign the 
corresponding points for each cluster in certain scenarios. 
Step 1 is successful if the data can be separated in 2D, i.e. its 
projection onto the ground plane. Step 2 is computationally 
more expensive and can perform the cluster assignment if the 
feet are separable in 3D space. In case the feet touch, Step 3 
must be applied, which computes the ideal cut through the 
adjacent clusters. 
 
 

 
Figure 5: Left: Step 1, Middle: Step 2, Right: Step 3 
 
 
The advantage of this 3-step procedure is that in a typical gate 
cycle, in the vast majority of frames the feet can easily be 
separated in 2D, and the computationally more expensive 
subsequent steps need to be performed only when necessary. 
This increases the average frame rate compared to using only 
a single, albeit more sophisticated algorithm.  
 
5.4  Foot Position and Orientation 
 
In order to estimate the orientation, we perform a Principal 
Component Analysis on the cluster points of each foot. The 
direction is then set to the Eigenvector corresponding to the 
largest Eigenvalue of the covariance matrix. 

We then project each point onto the direction vector and 
select the foremost point in this direction. This point, together 
with the direction vector and the user's foot length, 
unambiguously defines the foot’s position. 
 
5.5  Walker Ego-Motion 
 
Since the coordinate system moves with the walker, it is 
necessary to compensate for the walker motion. The origin of 
the coordinate system stays at the projection of the camera 
centre to the ground. While the walker moves, any position 
recorded in the past must be moved in the opposite direction 
by distance the walker travelled. 
 One option is to use wheel odometry or inertial sensors to 
recover the ego-motion. In order to avoid additional hardware 
requirements, we implemented a vision-based method.  
At each step cycle, there exists a point where both feet touch 
the ground. At this moment, we record the feet positions. 
Until this point occurs again, the walker’s ego-motion can be 
determined by computing distance in y-Direction between the 
foot standing still and the stored position. 

6 Experimental results 
Typical output produced by our system is shown in Figures 6 
and 7. Figure 6 shows that the same data is generated as in the 
physical gait walkway in Figure 1, i.e. the feet’s position, 
orientation and pressure distribution at each step. While the 
figure only shows a short sequence, every step the user takes 
is visualized and the data is stored to disk for further analysis. 
 

 

 
Figure 6: "Virtual Walkway" result sample. 



Figure 7 shows a sample trajectory of the foot tips. It 
illustrates how our system is not only capable of generating 
data at each step on the ground, but also during the swing 
phase.  
 

 
Figure 7: Sample Trajectory of the Foot Tips 
 
The algorithms in Section 5 are designed with a strong focus 
on speed, which makes it possible to achieve the desired 
frame rate of 15-20 Hz on a single Intel®-i7 CPU core using a 
depth map resolution of 640x480 pixels. If higher frame rates 
are required, the depth map can be sub sampled to around a 
quarter of the resolution without influencing the results, 
making frame rates at around 30 Hz possible. 
 
In order to estimate the accuracy of both position and 
orientation, we performed an extensive evaluation using the 
Microsoft® Kinect™ sensor. 
 For ground truth generation, we printed several identical 
feet patterns and placed them at different positions and angles 
behind the walker. Since absolute trajectories and positions 
are not relevant for gait analysis, but only the accuracy at 
each single step matters, we measure relative angles between 
the patterns and the distances between the foot tips. 
 As shown in Table 1, the average position accuracy turned 
out to be slightly less than 3 mm, evaluated in 20 
measurements. The error is independent of the step length. 
Part  of  the  deviation  can  be  explained  by  the  average  3D  
point resolution of ~1.5 mm and minor inaccuracies at ground 
truth capturing.  Table 2 shows the results of the angle 
accuracy evaluation. The error increases with the angle, 
mainly due to occlusions. However, at typical angles when 
walking (0-15°) the average error of 1.6° is only slightly 
higher than the ground truth accuracy. 
 

 
N µerror Mederror error 
20 2,96 mm 2,93 mm 1,68 mm 

Table 1: Position Accuracy 
 

Angle N µerror Mederror error 

0°–15° 40 1,62° 1,39° 1,17° 
15°-30° 40 2,26° 1,86° 2.05° 
30°-45° 40 3,16° 2,86° 2,18° 

Table 2: Angle Accuracy 
 
 

For comparison, we have evaluated the accuracy of an inertial 
measurement unit (IMU), namely the Inertial Elements 
Osmium MIMU22BT [12].  Osmium produces MIMUs (multi 
IMU) that operate by fusing the measurements of several low 
cost sensors resulting in enhanced measurement performance. 
The Osmium MIMU22BT is closely related to the OpenShoe 
project, an open source foot-mounted inertial navigation 
system (INS) [13] initiative.  We used OpenShoe scripts for 
data acquisition. While manual calibration can be performed 
for each individual device using a special calibration object, 
we used the manufacturer default calibration for practical 
considerations regarding a potential later deployment, i.e. for 
being applicable for our target group simplicity in deployment 
is a factor of high importance. 
 
As shown in Figure 7, the IMU has been attached to the tip of 
the foot. Table 3 shows the evaluation results. Compared to 
our results, it turns out that the angles can be measured more 
accurately  using  the  IMU,  but  the  position  error  is  
significantly higher. 
 

    
 
Figure 8: IMU attached to the tip of the foot. 
 

µPosition MedPosition Position µAngle MedAngle Angle 
7,3 mm 6,0 mm 6,6 mm 0,65° 0,50° 0,50° 

Table 3: IMU Evaluation Results 

7 Conclusion & Outlook 
By upgrading a standard wheeled walker with a depth sensor 
(e.g. Microsoft® Kinect™), we are able to cover the same 
position- and orientation measurements as a deployed gait 
walkway instrumented with pressure sensors, which is 
currently the state of the art in gait analysis. In addition, we 
are able to produce continuous measurements during the 
whole  gait  cycle,  i.e.  including  the  swing  phase.  This  is  
achieved at rates of 15-30 Hz (depending on the hardware and 
resolution), which allows for real-time gait pattern analysis. 
 While the feet's position and orientation are obtained with 
sufficient accuracy using the depth sensor, foot pressure 
measurements demand additional hardware in form of a 
commercialized insole sensor. Nevertheless, such a sensor is 
still an order of magnitude cheaper than a fully instrumented 
walkway system. 
 
Depending on the user's gait pattern, occlusions can affect the 
system's ability to capture the feet positions. In our future 



work, we intend to investigate to what extent mounting a 
second depth sensor yielding an additional viewpoint can 
overcome these problems. Recent innovations in 3D depth 
sensing (e.g. Intel® RealSense™ R200/F200, PMD® 
CamBoard pico flexx) will be considered and support our 
aims twofold: First, the form factor/power consumption will 
allow for a seamless integration into the walking frame. 
Second, we expect that some combination of sensing devices 
is likely to support our aim for outdoor/sunlight compatibility 
as required for continuous measurements in daily activities. 
 Furthermore our future work will address the 
measurement of additional data relevant to gait analysis, e.g. 
position of the knees in 3D space and the angles between the 
lower leg and the upper leg, and the lower leg and the foot, 
respectively. That way we want to produce a skeletal 
animation of the limb movement during motion, as well as 
derive higher level semantic information like the joint angle 
and angular velocity plots discussed in [1].  
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