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Abstract—This paper deals with the problem of localizing a
group of robots. Each robot is equipped with an autonomous self-
localization system based on both high-rate odometers and a front
camera detecting sporadically simple visual landmarks placed on
the floor at known positions and with a known attitude within a
given 2D reference frame. In addition, the robots can share their
own states to improve localization accuracy. In this paper, after
reviewing the general problem of collaborative localization, two
potential strategies based on a distributed Interlaced Extended
Kalman Filter (IEKF) are compared. In the first one, localization
is refined through high-rate mutual measurements of Euclidean
distance between pairs of robots. The distance values are obtained
using an omni-directional wireless ranging system of limited
accuracy. In the second one, an on-board Kinect-like front RGB-
D vision system is assumed to measure both the agent’s distance
and its relative orientation with respect to other robots in view
at a lower rate, but with higher accuracy. To the best of authors’
knowledge, this performance comparison is new, since most of
previous studies on collaborative localization are overoptimistic
as implicitly assume that mutual agent measurements are not
intermittent and are available at all sampling times.

Keywords—Localization, position measurements, sensor fusion,
estimation, distributed systems, Kalman filters.

I. INTRODUCTION

Indoor localization of mobile platforms is a well-known
measurement problem that has been tackled using different
technologies, depending on both the nature of the targets to
be tracked and the level of accuracy required. Since absolute
localization based on Global Navigation Satellite Systems
(GNSS) can be hardly used indoors, several alternative tech-
niques have been proposed over the last few years. They
range from low-cost (but quite inaccurate) solutions based
on Received Signal Strength (RSS) measurements and fin-
gerprinting of standard wireless signals (e.g. WiFi) [1], to
expensive systems able to measure the distance from a target
with uncertainty of a few cm using the time-of-flight (ToF)
values of Ultra-Wide Band (UWB) pulses [2], laser beams [3]
or ultrasonic stimuli [4], [5]. In the case of wheeled devices,
such as robotic vehicles, localization can also benefit from
the use of dead reckoning techniques (e.g. based on odometry
or inertial measurement units), which can be combined with
absolute positioning data (e.g. collected by vision systems [6])
through proper fusion algorithms [7]–[9].

The localization of multiple robotic platforms (henceforth
referred to as agents) is typically a difficult problem if it
is addressed in a centralized way, especially in non-line-
of-sight (NLOS) conditions and when multiple targets are

present in the same environment. However, if the problem is
tackled in a distributed way, with each agent being endowed of
an autonomous localization system, the presence of multiple
agents can possibly turn into an advantage, provided that
different robots are able to cooperate. This general idea, often
called synergic or collaborative localization, has proved to be
successful in different contexts involving groups of robots [10],
[11].

An early study on synergic localization is presented in [12].
In [13] the authors envision a fully wireless synergic lo-
calization system based on the potential ability of clusters
of 4G mobile devices to measure their reciprocal distances
through a hybrid time of arrival/angle of arrival (TOA/AOA)
technique. The case of collaborative localization of wireless
mobile platforms has been also addressed in [14], where
the so-called parallel projection method is used to improve
localization accuracy in NLOS conditions. Taniuchi et al.
suggest using a spring model to reduce the pose estimation
uncertainty associated with distance measures obtained using
WiFi and Bluetooth RSS data [15].

In the field of robotics, Fox et al. propose a Markov-based
probabilistic method in which each robot’s belief about its own
position is refined as soon as other robots are detected [16]. A
different Markovian approach is adopted in [17]. In this case,
first the egocentric measurement data are fused locally to create
a Markov chain of robot pose estimates. Then, both inter-
robot measurement data and state estimates are transferred to
a central server, where localization is refined by minimizing
the mean square error of agents’ positions.

An alternative statistical method for collaborative localiza-
tion is instead described in [18]. This relies on a decentralized,
real-time particle filter coupled with a reciprocal sampling
algorithm to reduce the overall computational burden. In spite
of the accuracy improvements achieved by applying computa-
tionally demanding optimization strategies to the collaborative
localization problem [19], the simplest general technique for
fully-distributed, multi-robot localization is still the extended
Kalman filter (EKF) [12]. In [20] the update step of a dis-
tributed EKF is modified by an algorithm preventing data reuse
in order to avoid inconsistent (i.e. overconfident) covariance
estimates.

Panzieri et al. address the collaborative localization prob-
lem by means of an interlaced extended Kalman filter
(IEKF) [21], [22]. The IEKF is inherently distributed, com-
putationally acceptable and easy to implement. Therefore, this



was also used as a starting point for the analysis reported in
this paper. However, the implementation of the original IEKF
disregards the possibility of both having different sampling
rates and intermittent observations. The goal of this paper
instead is to investigate to what extent the trade-off between
accuracy, and rate of inter-robot relative position measurements
can affect localization accuracy. In the following, at first, in
Section II, the collaborative localization problem is formalized.
Afterwards, in Section III, the IEKF algorithm is recalled
and it is generalized in the case of intermittent observations.
Section IV reports several simulation results comparing two
different techniques to measure the relative position of pairs of
agents, i.e. using a low-rate RGB-D camera or, alternatively,
a less accurate wireless ranging system collecting data at a
higher rate. Finally, Section V concludes the paper and outlines
future work.

II. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

As shortly explained in the Introduction, for collaborative
or synergic localization of a team of agents we mean the
ability to refine the position and the heading estimated by
each agent in a common reference frame by using both local
positioning data and relative distance and/or attitude measures
between pairs of devices. The main underlying assumptions
are summarized below.

1) N agents can move freely in a large room. The
dynamic of each agent does not depend on any other
agent, since each user may act independently. The
only constraint to robot motion is collision avoidance.

2) The state of each agent i (with i = 1, . . . , N )
at time kTs (Ts being the sampling period used
to discretize the system) is represented by vector
p
(i)
k = [x

(i)
k , y

(i)
k , θ

(i)
k ]T , where x(i)k and y

(i)
k are the

agent’s planar coordinates in the chosen reference
frame, while θ(i)k is the angle between the longitudinal
axis of the robot and the x−axis of the reference
frame.

3) Each agent is able to estimate its own state au-
tonomously (namely without the help of other agents)
by fusing odometry data with absolute position and
heading measures obtained from special visual land-
marks (e.g. QR codes) placed regularly on the floor at
the same distance from one another and in such a way
that at most one of the them can be detected by a plain
monocular camera directed towards ground [23].

4) Besides the sensors used by each robot for its own
local state estimation, every agent is supposed to be
equipped with two alternative types of exteroceptive
sensors for collaborative localization, i.e. either an
omni-directional wireless ranging system (case A) or
a front RGB-D camera (e.g. a Kinect [24]) (case B).
Both cases are qualitatively shown in Fig. 1(a) and
(b), respectively. In case A the ranging system is used
to measure just the distance between a robot and any
other agent located within an (approximately) circular
range. On the contrary, in case B the stereo vision
system is employed to recognize and to measure the
relative position between the robot’s camera and any
other agents located within its detection range.
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Figure 1. Qualitative overview of the measurement systems mounted on
each agent for collaborative localization: an omni-directional wireless ranging
systems for distance measurement only (a), and a front RGB-D camera
measuring the relative position of two agents (b).

5) All agents are equipped with a radio transceiver en-
suring complete connectivity between pairs of robots
as well as high-rate and low-latency communication.
Long Term Evolution (LTE) wireless modules can
indeed meet such requirements [25].

If each robot is modeled as a unicycle-like vehicle, the overall
state transition of all agents in the chosen reference frame is
given by the following non-linear discrete-time system [21],
i.e.

pk+1=
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...

p
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k+1

=

f(p
(1)
k ,u

(1)
k ,ε

(1)
k ) · · · 0

...
...

...
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where
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k ), i=1, . . . , N,

(2)
describes the evolution of the i−th robot, u(i)

k = [δs
(i)
k , δθ

(i)
k ]T

is the input vector including the linear and angular displace-
ments of the i−th agent at time kTs,ε

(i)
k is the vector including

the respective zero-mean noise terms and, finally,

G
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cos θ
(i)
k 0

sin θ
(i)
k 0

0 1

 . (3)

The observation model associated with system (1) includes two
types of output functions, i.e.

• the geometrical relationship between the position and
heading of each agent and those of any detected visual
landmark in the same reference frame;



• the geometrical relationship between the pose of each
robot and those of the other N−1 agents in the room.

As a result, the overall observation equation at time kTs
becomes

zk=

z
(1)
k
...

z
(N)
k

=

 h̃(1)(pk)
...

h̃(N)(pk)

+

η
(1)
k
...

η
(N)
k

 , (4)

where vector z(i)k =
[
z
(i,1)
k , . . . , z

(i,N)
k

]T
includes all possible

observations from agent i, η(i)
k =

[
η
(i,1)
k , . . . ,η

(i,N)
k

]T
is

the vector comprising the respective measurement uncertainty
contributions, and, finally,

h̃(i)(pk)=
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, i = 1, . . . , N, (5)

is the vector including all observations from agent i. Note that
the i−th function of the vector, referred to as o(·), is different
from the other elements, as it depends on the geometrical
relationship between the position and the heading of each
agent and those of a detected visual landmark. On the contrary,
each function h(·, ·) consists of M equations and depends on
how the state variables of agents j = 1, . . . , N for j 6= i are
actually observed by the i−th robot. In the rest of this paper,
we will assume that while o(·) is the same in all conditions
(see assumption 3), the equations of h(·, ·) differ in case A
and case B, respectively, in accordance with assumption 4.

III. POSITION ESTIMATION ALGORITHM

The nonlinear model based on expressions (1)-(4) can be
used to implement an estimation algorithm similar to the
IEKF presented in [21]. Since the state evolution (namely
the pose) of each robot does not depend on the state of the
other robots, the prediction step equations of the IEKF are
straightforward, as they basically coincide with those of N
independent standard EKFs, i.e. [26]

p̂
(i)
k+1|k= p̂

(i)
k|k +G

(i)
k uik

P̂
(i)
k+1|k=F

(i)
k P̂

(i)
k|kF

(i)T

k +G
(i)
k Q

(i)
k G

(i)T

k

i = 1, . . . , N (6)

where p
(i)
k+1|k and p̂

(i)
k|k denote the predicted and estimated

states, respectively, at time kTs, P
(i)
k+1|k and P

(i)
k|k are the

corresponding covariance matrices, F (i)
k is the Jacobian of (2)

with respect to p(i) computed at p̂(i)
k|k, G(i)

k is defined as in (3),
uik is the vector of the input values at time kTs and, finally,
Q

(i)
k is the covariance matrix of ε(i)k (i.e. due to odometers).

Observe that (6) depends just on local quantities. Therefore, the
prediction step equations can be computed locally, i.e. on board
of each robot, thus ensuring a fully distributed implementation.

As far as the update step is concerned, the corresponding
equations are different from those of a standard EKF for two
reasons. First of all, due to the definition of the measurement
model (4), the updated state estimate of the i−th agent and its
covariance matrix depend not only on the respective predicted
values and on the measurement data, but also on the predicted
state and on the predicted covariance of the other agents.
Secondly, generally a robot is not able to observe all the other
agents simultaneously and can occasionally miss landmarks
as well. This means that all observations are inherently inter-
mittent, as they depend on the reading range of the chosen
measurement systems and on the distance between each robot
and both the other agents and one of the landmarks. In
particular, if the distance between pairs of adjacent landmarks
is larger than the reading range of the camera, then at most
one landmark can be used in the update step. As a result of
all the issues above, the update step of the proposed IEKF is
inherently stochastic in the case considered.

In the classic IEKF formulated in [21], the computation of
the innovation term associated with a generic pair of agents
(i, j) relies on the predicted state of j regarded as an additional
measure. Therefore, both p̂

(j)
k+1|k and its covariance matrix

P
(j)
k+1|k have to be transmitted to agent i, thus “interlacing”

the two subsystems. In particular, P (j)
k+1|k has to be included

in the Kalman gain, as it will be shown in the following, to
keep into account the fact that p̂

(j)
k+1|k is affected by some

uncertainty.

The problem of intermittent observations and the related
stability issues are deeply analyzed in [27] for simple KFs, but,
to the best of authors’ knowledge, have never been considered
in the case of IEKFs. By extending a similar approach to the
system at hand for all pairs of agents i and j, we can define
a binary random variable γ

(i,j)
k , to be set to 1 if agent i is

able to observe agent j at time kTs, or 0 otherwise. Similarly,
γ
(i,i)
k is set to 1 if robot i is able to detect a landmark at

time kTs, or 0 otherwise. Starting from the basic update step
equations of an EKF and assuming to replace the variance of
real measurements with a large dummy value anytime γ(i,j)k =
0, after some algebraic steps it can be shown that, if the dummy
variance tends to infinity [27], then the update equations of the
IEKF running on agent i become

p̂
(i)
k+1|k+1 = p̂

(i)
k+1|k+K

(i)
k+1Γ

(i)
k+1[z

(i)
k+1−h̃(i)(p̂k+1|k)]

P̂
(i)
k+1|k+1 = P̂

(i)
k+1|k−K

(i)
k+1Γ

(i)
k+1H̃

(i,i)
k+1 P̂

(i)
k+1|k

(7)

where, if IM denotes the unit matrix of size M , then

Γ
(i)
k+1=



γ
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k+1 IM 0 · · · · · · 0

...
...

...
...

...
· · · · · · γ

(i,i)
k+1I3 · · · 0

...
...

...
...

...
0 · · · · · · 0 γ

(i,N)
k+1 IM


(8)

is an M · (N−1)+3×M · (N−1)+3 diagonal matrix made of
binary random variables (as all observations can be reasonably
assumed to be independent); H̃(i,i)

k+1 is the Jacobian of h̃(i)(·)



with respect to p(i) computed at p̂k+1|k and

K
(i)
k+1=P̂

(i)
k+1|kH̃

(i,i)T

k+1

[
H̃

(i,i)
k+1P̂

(i)
k+1|kH̃

(i,i)T

k+1 +S̃
(i)
k+1+R̃

(i)
k+1

]−1
(9)

is the Kalman gain of the IEKF running on the i−th agent.
Observe that (9) comprises two measurement covariance ma-
trices instead of just one, i.e. the block diagonal covariance
matrix

R̃
(i)
k+1 =



R
(i,1)
k+1 0 · · · · · · 0
...

...
...

...
· · · · · · R

(i,i)
k+1 · · · 0
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and

S̃
(i)
k+1 =

N∑
j=1∧j 6=i

H̃
(i,j)
k+1P̂

(j)
k+1|kH̃

(i,j)T

k+1 . (11)

Matrix (10) includes both the covariance matrix R
(i,j)
k+1 asso-

ciated with the relative pose measurements between each pair
of agents (i, j) and the covariance matrix R

(i,i)
k+1 due to the

absolute position and heading measures injected into the IEKF
anytime a visual marker is detected. Matrix (11) instead takes
into account the covariances P (j)

k+1|k of the states predicted by

the agents different from i, with H̃
(i,j)
k+1 being the Jacobian

of (5) with respect to p(j) for i 6= j and computed at p̂k+1|k.

It is worth emphasizing that expressions (6) and (7) are
absolutely general, but their actual implementation depends on
the observation model used. With reference to the two models
introduced in Section II, in the rest of this paper we will denote
with subscripts A and B all the quantities which refer to case
A and case B, respectively. In particular, in case A h̃(i)(pk)=

h̃
(i)
A (pk) = [hA(p

(i)
k ,p

(1)
k ), . . . ,o(p

(i)
k ), . . . ,hA(p

(i)
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(N)
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(j)
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k )2 (12)

and

o(p
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 (xq−x(i)k ) cos θ
(i)
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k
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(i)
k

θq−θ(i)k

 , (13)

with (xq, yq, θq) being the planar coordinates and orientation
of the q−th visual landmark on the floor in the chosen absolute
reference frame. Dually, in case B h̃(i)(pk) = h̃

(i)
B (pk) =

[hB(p
(i)
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(1)
k ),. . .,o(p

(i)
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(i)
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(N)
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(j)
k −y

(i)
k ) cos θ

(i)
k

]
(14)

and o(p
(i)
k ) is the same as (13). Of course, a similar notation

can be extended to all variables used in expressions (6)-(11).
For instance, R(i,j)

A,k+1 and R(i,j)
B,k+1 denote the covariance matri-

ces associated with the relative measurements between agents
i and j in case A and case B, respectively, at time (k+ 1)Ts.
Since such matrices can be assumed to be stationary, the time

index can be omitted in the following. Notice that both (12)
and (14) are nonlinear, but the number of observations M
when another agent is detected is different in either case. In
case A M = 1 since low-cost wireless ranging systems can
just measure the distance between transmitter and receiver,
whereas in case B M = 2 because the relative offsets between
agents i and j along axes x and y can be easily extracted from
the image collected by the RGB-D camera. On the contrary,
measuring the relative orientation between i and j requires
more sophisticated image processing algorithms and it is a
measurement problem on its own. This is why this kind of
measurements has not been included in the present analysis.

A final remark is on communication latency, which may
influence measurement uncertainty significantly, due to the
difference between the time when the predicted state of agent
j is sent to agent i and the moment when the relative pose
of j is actually measured by i. If assumption 5 defined in
Section II holds, then the impact of communication latencies
is negligible, provided that robots move so slowly that their
linear and angular displacements during the time interval spent
for communication is reasonably small. On the contrary, if
the communication latency becomes significant, then the un-
certainty contributions affecting all measurements of position,
distance and heading should be properly estimated and used
to boost the elements of R(i,j)

A and R(i,j)
B .

IV. SIMULATION RESULTS

In order to evaluate the positioning accuracy with and
without collaborative localization in case A and B, respectively,
the results of some Monte Carlo simulations in different
conditions are reported in the following. The main simulation
parameters are listed below:

• Duration of each simulated path: about 120 s;

• Number N of agents in the room: between 2 and 10;

• Room size: 100 m2;

• Number of random paths of each robot: 24;

• Robots linear velocity range: [0, 2] m/s (at such speeds
assumption 5 holds, so the effect of communication
latencies can be assumed to be negligible);

• Robots angular velocity range: [−π2 ,
π
2 ] rad/s;

• Odometers sampling period: Ts = 4 ms;

• Covariance matrix of odometry noise (based on ex-
periments on the field): Qk = diag(2 · 10−8m2, 2.2 ·
10−7rad2). In order to make simulations more realis-
tic a relative (uncompensated) offset within ±3% of
wheels’ angular displacements have been included in
the simulated odometry.

• Reading range of the ground-facing monocular camera
for landmark detection: 1 m with an aperture angle of
about 40◦;

• Distance between landmarks on the floor (assuming a
regular grid): 2 m;



Table I. RELATIVE FREQUENCY OF DETECTION (EXPRESSED IN %) OF
SOME OTHER AGENTS IN Case A AND IN Case B, RESPECTIVELY.

No. Agents 2 3 4 5 6 7 8 9 10
Case A 9.8 9.9 10 10 10 10 10 10 10
Case B 0.2 0.4 0.5 0.7 0.9 1.0 1.2 1.3 1.4

• Covariance matrix of the measurement uncertainty
associated with landmark detection (based on exper-
iments on the field): R(i,i)

A = R
(i,i)
B = diag(1.6 ·

10−3m2, 5 · 10−5m2, 1 · 10−3rad2).

• Wireless system detection range: about 15 m;

• Rate of wireless range measurements: about 25 Hz;

• Variance of indoor wireless distance measurement data
anytime agent j is detected: R(i,j)

A ≈ 0.45 m2, in
accordance with the experimental results published in
the scientific literature [28], [29];

• RGB-D camera reading range (according to Kinect-
like specifications): from 0.8 m to 3.5 m with a
horizontal aperture angle of about 57◦;

• Covariance matrix of stereo camera measurements
anytime agent j is detected (based on Kinect’s v.2
average accuracy reported in [30]): R(i,j)

B = diag(6.1 ·
10−7d(i,j)

2

m2, 6.25 · 10−6m2), with d(i,j) being the
distance between agents i and j along the focal axis
of the camera.

• Camera and Kinect image acquisition rate: about 10
Hz.

Tab. I shows the simulated probabilities (expressed in %) that
agent i detects some other agent in Case A and B, respectively.
The reported values keep into consideration the actual data
rates of the sensors employed for collaborative localization.
Given that the RGB-D image acquisition and processing rate is
notoriously quite low and its reading range is also much more
limited than the range of a wireless system, the probability of
agent detection in Case B is about 10 times smaller than in
Case A. Observe that while in Case B the detection probability
slightly grows with the number of agents, in Case A it saturates
to about 10%. This is reasonable, because, even though the size
of the room is smaller than the nominal wireless reading range,
the rate of wireless distance measurements is 10 times smaller
than the system sampling frequency. Thus, only once out of
10 times at least one of binary variables γ(i,j) is equal to 1
for i 6= j.

Fig. 2 shows the average root mean square estimation
errors (RMSE) of state variables x (a), y (b) and θ (c) of
one of the agents as a function of the number of robots
N moving freely in the room. First, the RMSE values for
each path are computed. Then, they are averaged together.
Different bars refer to Case A, Case B and without collabora-
tive localization, respectively. Notice that the results without
collaborative localization do not depend on N , as expected,
because the same 24 paths are used in all tests. On the other
hand, both collaborative localization strategies greatly enhance
the accuracy in estimating the state variables. Of course, such
an improvement is more evident when the number of agents
grows, due to the availability of a larger amount of relative
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Figure 2. Average RMS estimation errors of state variables x (a), y (b) and
θ (c) for one of the agents as a function of the number of robots in the room
and in case A, case B and without collaborative localization, respectively.

measurement data from nearby robots. Quite interestingly, in
spite of some fluctuations due to the limited set of simulated
paths, the estimation accuracy of x and y in Cases A, B is
comparable for a given N . The greater amount of available
information due to both larger wireless coverage and higher
data rate indeed compensate the poorer accuracy of wireless
ranging. As far as state variable θ is concerned, estimation
accuracy is generally clearly better in Case B. Also, the
accuracy gap compared to Case A tends to grow with N ,
because wireless ranging cannot measure the relative position
of two agents in a 2D reference frame.

V. CONCLUSIONS

Collaborative or synergic localization refers to the ability
of a group of robots to refine their own estimated positions
by using both neighbors’ states and relative measurements of



distance and/or position. In this paper, the performances of
two alternative collaborative localization strategies, both based
on a common underlying Interlaced Extended Kalman Filter
(IEKF), are compared through simulations. The reported re-
sults confirm that the effectiveness of collaborative localization
becomes more evident when the probability of detecting other
agents in the environment grows. In the two cases considered,
the use of a RGB-D camera seems to be globally preferable to
wireless ranging, although the difference is not so impressive
as it was expected. Future work will be focused on a more
in-depth analysis of the trade-off between these two scenarios,
possibly finding an analytical relationship between detection
probability, measurement accuracy and target performance.
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