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Abstract. People with impaired physical and mental ability often find it challenging to negotiate crowded or unfamiliar envi-

ronments, leading to a vicious cycle of deteriorating mobility and sociability. To address this issue we present a novel motion

planning algorithm that is able to intelligently deal with crowded areas, permanent or temporary anomalies in the environment

(e.g., road blocks, wet floors) as well as hard and soft constraints (e.g., “keep a toilet within reach of 10 meters during the jour-

ney”, “always avoid stairs”). Constraints can be assigned a priority tailored on the user’s needs. The planner has been validated

by means of simulations and experiments with elderly people within the context of the DALi European project.
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1. Introduction

With unimpaired ability, pedestrians are able to find

their way across complex and crowded areas with few

problems. With reduced abilities this apparently sim-

ple task easily becomes a challenging one. A person

with reduced mobility needs to minimise the travelled

distance. A person with cognitive problems should

avoid situations that challenge her sense of direction

and confuse her perception of the environment. The

difficulty in identifying the best path and in making
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proper reactions to unexpected contingencies gradu-

ally reduce the confidence of the impaired person in

using public spaces. The afflicted are most often older

adults and the problem worsens quickly if no adequate

countermeasure is taken [3,37]. They are deprived of

essential social relations with a negative impact on

their physical condition (reduced exercise), on their

psychological wellbeing (reduced social contact) and

even on the quality of their nutrition when they reduce

the frequency of their visits to supermarkets [35,1].

The application of assistive robotic technologies can

be of significant help to offset this trend.

In this work we therefore consider a dynamic mo-

tion planning problem in a complex but known envi-

ronment containing other moving agents (i.e., pedestri-

ans). The planner’s motion is constrained by the user’s

preferences (preferred speed, preferred proximity to

others and preferred or disliked areas in the environ-

ment) and must accommodate any recent modifica-
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Fig. 1. Diagrammatic overview of the motion planning framework.

The whole process can be divided into three main elements: the long

term planner that considers the long term objectives, the short term

planner that optimises the long term plan taking into account the

short term objectives and constraints, and the guidance that drives

the robot towards the goal.

tions to the environment that are not known a priori

(e.g., due to maintenance work). The goal of the plan-

ner is to help the user visit a number of points of in-

terest in the most stress-free and efficient manner. Our

basic approach is to construct a graph data structure of

sufficient granularity to represent efficient direct paths

between points of interest. The planner attempts to fol-

low paths defined on the graph, but may deviate to

avoid other pedestrians or at the specific request of the

user. The complexity of the problem is essentially that

of finding the shortest path on a graph.

Figure 1 illustrates the different types of support that

a robotic system with cognitive abilities can offer in

the navigation of a complex environment.

From a top-down perspective, the first type of assis-

tance is offered before taking on the navigation activ-

ity and is the production of a plan that takes into ac-

count long term objectives. This is accomplished by

the long term planner, which accounts for the topol-

ogy of the space, the user’s preferences and the possi-

ble presence of obstacles or problems along the way, as

foreseen by querying environmental sensors. While the

user is moving, she could encounter contingent prob-

lems that cannot be anticipated (e.g., a small group

of people obstructing the path). In this case her robot

assistant could react by planning a minimal deviation

from the path that preserves her safety and wellbeing.

In our terminology, this component is called the short

term planner (see Figure 1). Finally, a robot assistant

can guide the user along the planned path. This can be

done in different ways depending on the type of robot

assistant. If the robot is simply a guiding vehicle, like

a tour-guiding vehicle [33], guidance amounts to fol-

lowing the path and to ensuring that the user trails be-

hind. If the robot is a robotic walker, it can guide the

user by mechanically turning its wheels and acting on

the wheel brakes [15] or by administering visual, au-

dio or haptic signals [31,32]. If the robot is a robotised

wheelchair it can be assimilated to a robotic vehicle

driving in crowded spaces [4].

This paper proposes a novel long term planner that

targets the first task described above. Consider a per-

son willing to execute a set of activities in a public

space. Henceforth, we will use the term assisted person

(AP) to define the user. The problem the AP faces is to

identify the best way to reach the chosen point of inter-

est. This decision could potentially be taken using any

state-of-the-art algorithms for motion planning, able to

identify the path with minimum length (or requiring

minimum time) given the a priori knowledge of the

map. A first problem is that while the position of most

fixed objects (e.g., buildings, rooms, and points of in-

terest) is known a priori, the algorithm must account

for the possibility of incidental changes, such as tem-

porary obstructions. Standard motion planning algo-

rithms can easily be adapted to consider an up-to-date

picture of the state of the environment (e.g., presence

of obstructions or over-crowded spaces) as it arrives

from environmental sensors. However, a simple mod-

ification to a standard planner could be insufficient.

First, the detected anomaly could be a temporary one.

So, the likelihood of having to deal with the problem

during the navigation depends on the time needed to

reach the place where the anomaly is located, which

in turn depends on the chosen path. What is more, the

AP (who is typically an older adult) will likely have

specific additional requirements. For instance, the AP

could need a frequent access to the toilet, and if the

optimum path offers no easy access to the toilet on the

way, it could easily generate discomfort. The AP could

be hyper-vigilant and overly concerned with her per-

sonal security. In this case, she might appreciate al-

ways being within reach of a policeman or of other

staff members that she perceives as a reassuring pres-

ence.

Simply put, what we need is an algorithm for mo-

tion planning in public spaces that accounts for 1. the

topological and metric information about the space,

2. time-varying environmental information about the

space, such as the availability of services (is the shop

that the AP wants to visit actually open?), the presence

of occlusions and overcrowded areas, etc., 3. prefer-
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ences of the AP (e.g., the need to be in easy reach of

assistance, toilets, etc.).

The presence of these specific requirements makes

the planning algorithms offered by commonplace nav-

igators (such as Google Maps) infeasible. What is

needed is a different approach that carefully considers

the strong psychological aspects involved in the selec-

tion of a route. In this paper we report on the solution

that we have developed within the context of two re-

search initiatives sponsored by European Union: De-

vices for Assisted Living (DALi) and A Cyberphysi-

cAl social NeTwOrk using robot friends (ACANTO).

These projects are based on a substantial involvement

with users, both for requirements collection and for the

evaluation of the results. The algorithm proposed here

distils this experience and translates it into a suitable

formal model by using a modified Dijkstra’s short-

est path algorithm [11] where the underlying graph is

constructed using quad tree decomposition of the free

space [5].

The paper is organised as follows. A review of the

current state of the art is presented in Section 2, while

a complete description of the requirements of the plan-

ner can be found in Section 3. Section 4 goes into the

details of the planning algorithm and Section 5 illus-

trates the functionalities of the software architecture.

Sections 6 and 7 report the results of qualitative and

quantitative simulations respectively, and Section 8 de-

scribes our case study and the related experiments. Fi-

nally, in Section 9 we offer our conclusions.

2. Related work

Motion planning in crowded environments is a rel-

evant research problem in robotics which has received

constant attention throughout the past two decades [25,

27,24]. The approach that we advocate is based on a hi-

erarchical decomposition of the problem between short

term and long term planning. Different authors in the

literature propose a strategy of this kind [28,18], but

the solutions at each of the two levels of the hierarchy

differ significantly, depending on the requirements that

each author considers. The goal of a long term planner

is to find an efficient path in free space from a start-

ing point to some desired destinations, given the topo-

logical and metric constraints derived from the map.

In the following sections we will compare the different

components that compose the long term planner with

respect to the state of art.

2.1. Shortest-path planning

2.1.1. Sampling methods

When the map is not entirely known in advance

(e.g., due to uncontrollable changes in the environ-

ment), a convenient choice can be the adoption of

sampling-based algorithms. In this class the Prob-

abilistic RoadMap (PRM) algorithm by Kavraki et

al. [21] and the Rapidly Exploring Random Trees

(RRT) [26] have gained an undisputed reputation and

visibility in the past few years. The idea of this class of

algorithms is to generate feasible points by sampling

randomly the neighbourhood of known points and con-

necting them into a data structure (e.g., a tree for RRT

or a graph for PRM). When the destination is finally

reached an optimal path can be found by exploring

the data structure. The more time that is given to the

computation, the more points that can be added and

the higher the probability becomes of finding an opti-

mal solution. Such algorithms have recently been re-

visited by Karaman and Frazzoli [20]. The revised ver-

sions, PRM∗ and RRT∗, are probabilistically complete,

meaning that if the algorithm is given enough time

to explore the space, it eventually identifies the opti-

mal solution with probability 1. An important point of

these algorithms is that while the data structure is be-

ing created it is possible to enforce a hierarchy of hard

and soft constraints penalising (or ruling out) points

that would violate them. This is an appealing feature

for us because our problem is characterised by a set

of constraints. However, the construction of the map

on the fly is an unnecessary computational burden in

our case. Our intended operational scenario is a pub-

lic space (e.g., a mall or a museum) for which a large

amount of a priori information is usually available.

2.1.2. Potential fields methods

Another family of algorithms is based on the def-

inition of potential fields [36,8] around obstacles and

points of interest that can attract or repel the robot.

Such approaches are known to be effective for obsta-

cle avoidance, but they are often plagued by local min-

ima (which sometimes delay or deadlock progress).

While encoding all the user’s planning requirements,

constraints and preferences with a potential function is

generally a difficult problem, our approach makes use

of the notion of gradients to encode user-defined desir-

able and undesirable zones. The full details are given

in Section 4.3
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2.1.3. Graph based methods

The long term planner proposed in this work falls

in the class of graph based techniques. In essence,

the idea is to decompose the environment into a grid

and then generate a graph by associating nodes to el-

ements of the grid and by then connecting with edges

the nodes associated to adjacent cells. Minimum time

paths on the graph can be found using the well-known

Dijkstra algorithm [11] or its extension A∗ [19]. The

use of a constant size grid is generally discouraged due

to the explosion of the configuration space size, hence

several more efficient ways to construct the graph have

been proposed. Possible approaches include Voronoi

diagrams [2] and PRM [21]. We follow Chen et al. [5]

and construct a graph using quad tree decomposition of

the space, exploring it with an extended version of the

Dijkstra algorithm. The generation of our quad tree is

specific for its application to structured indoor spaces,

with large rooms connected through corridors, doors

and passageways and where each room may contain

such things as counters, shelves and exhibition para-

phernalia that compromise its regularity.

2.2. Time-dependent paths

The most important feature of our algorithm is its

ability to deal with temporary anomalies (e.g., obstruc-

tions or large groups of people hindering the AP’s mo-

tion across some of the areas). In particular, anomalies

(i.e., temporary graph obstructions) require the gener-

ation of time-dependent paths. The underlying graph

exploits a dynamic and time dependent cost function,

thus the shortest paths between two edges can vary

over time. This problem is known to be challenging

and is the focus of independent research [12,9,10,16].

An interesting analysis on the complexity of this prob-

lem has been carried out by Foschini et al. [16].

They upper bounded the cost of traversing a graph

with polynomial-size piecewise linear cost functions

and with other particular classes of linear functions.

However, the cost remains high and prohibitive even

with small to medium sized graphs. In [9] the au-

thors present an overview of existing techniques to-

gether with three efficient speed-up methods. The ex-

periments, nevertheless, show that finding the solu-

tions requires several minutes (sometimes hours) using

server-class hardware.

Given these performance limitations, in our particu-

lar case we adopt a conservative assumption, described

in Section 4.6, that allows us to solve a simplified prob-

lem very efficiently. Our requirement analysis reveals

that senior users of a navigation tool become very an-

noyed by a long wait in front of a screen. Therefore,

efficiency and quick deliveries of decisions are more

important than producing “optimal” decisions (as long

as the decisions do not violate any hard constraints and

they respect soft constraints to a reasonable extent).

2.3. Global constraints and preferences

The global constraints (not to be confused with kin-

odynamic constraints, not considered here) are used

for customising the behaviour of the planner and for

introducing the notion of “comfort” for the AP. Con-

straints are prioritised and some of them can be vi-

olated if their compliance prevents the system from

finding any path. They embed priority and the possi-

bility for one or more constraints to be ignored if a

path cannot be found otherwise (namely, conflicting

constraints). This is called “planning with partial sat-

isfaction”, and is studied in the literature under the no-

tion of preference-based planning. In [6] the authors

focus on computation of relaxed plan-based heuristics

that guide the planner towards good solutions satisfy-

ing the given preferences expressed in Planning Do-

main Definition Language (PDDL). PDDL is one of

the languages aimed at standardising Artificial Intelli-

gence planning and is used in many international com-

petitions. However, its complexity and completeness

are an overkill with respect to the goals of this work.

A growing set of frameworks in the literature [34,

23] proposes to express temporal properties with par-

tial satisfaction using linear temporal logic (LTL).

In [23] the authors introduce a method for quantifying

the satisfaction of LTL formulae, and propose a plan-

ning framework that synthesises robot trajectories with

the optimal satisfaction value. However, they do not

consider constraints where the cost or priority changes

over time. Tumova et al. [34] present an automatic gen-

erator for control strategies for a robotic vehicle where

constraints are expressed with LTL formulae. The nov-

elty is the possibility of violating a constraint, accord-

ing to its priority, in order to complete the task (e.g.,

a road lane should not be crossed, but this is allowed

during car parking).

The concept of “comfort” has already appeared in

the literature with different meanings: 1) comfort of

the AP when navigating using a robotic platform [17,

29] and 2) comfort of the humans in the area surround-

ing an autonomous robot [22]. Our notion of comfort

belongs to the first class and it is deeply rooted in the

requirement analysis and in the validation activities
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with senior users that we have been conducting in the

context of the DALi and of the ACANTO projects. Our

findings are that the AP needs to specify zones that she

likes or dislikes. As an example, more often than not

she would prefer to bypass crowded areas or to always

have a toilet or a resting place within easy reach, even

if this entails choosing a slightly longer path.

3. Requirements, preliminaries and overview

The proposed long term planner has been developed

bearing in mind a number of requirements. The key

point is letting the AP personalise her journey while

keeping the planner reactive to changes in the environ-

ment. For this reason we have implemented three main

features.

The first feature gives the AP the possibility of

adding hard (non-violable) and soft (violable) con-

straints, according to some customisable priority. It is

possible to encode rules like “never get closer than 5

meters to any stair” or “try to keep within 10 meters of

a toilet”, or “always be within sight of a clerk or of a

policeman”. Should a soft constraint be in conflict with

another one, the issue is resolved by violating the one

with lower priority. A hard constraint, instead, cannot

be violated. If the long term planner encounters an in-

consistent state (e.g., not all hard constraints can be

satisfied) then the AP is notified and is asked to review

the set of constraints.

The second feature reacts to anomalies detected

in the environment by the sensing subsystem. An

anomaly is a bounded zone in the environment that be-

comes inaccessible for a limited period of time (e.g.,

a wet floor or blocked passage). After this period ex-

pires, the anomaly is cleared and the zone is accessible

again.

The final feature takes into account the crowded

spots in the environment. They are represented as heat

maps (an example is shown in Figure 7) where the ap-

parent “heat” represents the level of crowdedness. The

planner interprets this level as a penalising factor that

slows down the AP. Some users could also have spe-

cific constraints related to avoiding crowded areas.

The work flow of the algorithm begins with the AP

specifying a list of target locations she wants to visit in

the environment. The long term planner constructs a

plausible path (a long term plan) according to the con-

straints in her profile and to the current conditions in

the environment (known anomalies and current crowd-

ing represented by heat maps). This data is sampled

Fig. 2. Diagrammatic overview of the long term planner. Informed

by the heat maps and anomaly detectors, the long term planner con-

structs a long term plan according to the AP’s constraints. The plan

is then transferred to the control subsystem.

periodically from remote sensors (e.g., surveillance

cameras). If other robots are deployed in the environ-

ment, they can use their local sensing system to detect

anomalies and share this information through a cloud

infrastructure. For instance, if a walker detects a wet

floor sign, this information is propagated to the other

robots and accounted for in the generation of long term

plans. Once the AP accepts the plan and starts moving,

the control subsystem takes over, allowing the short

term planner to make limited adjustments depending

on the contingencies encountered on the ground. In the

event that the AP is unable to follow the plan with only

such limited modifications (e.g., because of encounter-

ing an unforeseen obstacle), the control subsystem has

the capability to report the event and can request the

construction of a new long term plan.

The long term planner produces the optimal path

according to the diagram depicted in Figure 2 and de-

scribed as follows:

1. the plan of an environment is broken down into a

grid of rectangular cells containing free space

2. a graph is derived from the grid, such that each

node is on the border between two cells and each

edge defines a path in free space

3. nodes corresponding to points of interest that are

not already present are added manually

4. the graph is augmented with relevant semantic

information (e.g., associating the names of points

of interest to nodes)

5. each edge is associated with a cost that accounts

for the distance to travel and for the occupancy

of the area (the more people, the longer the time

to travel)
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6. parts of the graph are removed or the weights of

edges increased to reflect the AP’s preferences

7. the optimal path is found using a modified Dijk-

stra algorithm.

In the next sections the algorithm is presented in its

full details.

3.1. Preliminaries

To describe our long term planner, we first define

some notation and operations on graphs.

A directed graph G = (N,E) is a set of nodes

n ∈ N linked by a set of edges e ∈ E. An edge

e = (n, n′) ∈ E is defined by its two adjacent nodes

n, n′ ∈ N .

Given graphs G1 = (N1, E1) and G2 = (N2, E2),
G1 ⊆ G2 =⇒ N1 ⊆ N2 ∧ E1 ⊆ E2 means that G1

is a subgraph of G2.

Given G1 ⊆ G2, G2\G1 = (N2\N1, E2\{e ∈ E1 |
e = (n, n′) ∧ (n ∈ N1 ∨ n′ ∈ N1)} is the graph

that remains after removing G1 from G2. We do not

consider G2\G1 if G1 6⊆ G2

Pairwise graph union is defined by G1∪G2 = (N1∪
N2, E1 ∪ E2). The union of a set of graphs G = {G1,
G2, G3, G4, . . . , Gm} is denoted

⋃

G and performed

pairwise, such that
⋃

G=((· · · (((G1 ∪ G2) ∪ G3) ∪
G4) ∪ · · · ) ∪Gm).

4. Long term planner

The long term planner proposes feasible paths that

efficiently visit the AP’s specified points of interest,

while respecting her preferences and accommodat-

ing the prevailing conditions in the environment. To

achieve this, the long term planner abstracts a com-

plex environment, such as a shopping mall, airport,

museum, etc., as a weighted directed graph, compris-

ing a set of nodes linked by edges. The nodes represent

places in the environment, while the edges represent

direct paths between the places and are weighted by

their effective length. The a priori length of an edge is

the Euclidean distance between its adjacent nodes. The

effective length of an edge is generally longer, mod-

elling its undesirability with respect to crowding and

the AP’s preferences. The edges are directed so that

the effective length of a path leading to an undesirable

area can be greater than the same path traversed in the

opposite direction.

Nodes are labelled with their physical location (co-

ordinates on the plan of the environment) and their

corresponding semantic position (supermarket, toilet,

post office, café, bar, bakery, etc.). Each edge in the

graph is labelled (weighted) with the effective distance

between its adjacent nodes. Then, using an efficient

graph traversal algorithm, i.e., the Dijkstra algorithm

[11], we find the shortest paths that link the AP’s points

of interest. Moreover, anomalies and crowding are in-

cluded in the same framework by simply modifying

the graph prior to finding the shortest path. In particu-

lar, anomalies cause parts of the graph to be (temporar-

ily) removed, while crowding increases the weights of

edges in crowded areas (their effective length is in-

creased because crowding slows the AP’s progress).

Certain user preferences, such as always being near a

toilet, may also be encoded as graph transformations.

4.1. Creating graphs from floor plans

To construct a graph that efficiently maps the free

space in the environment, we first decompose its floor

plan into a ‘quad tree’ [14], comprising quadrants con-

taining free space (free quadrants) and quadrants occu-

pied by fixed objects (occupied quadrants). A graph is

constructed by embedding nodes in only the free quad-

rants and linking them with appropriate edges. The

quad trees typically have substantially fewer cells than

a uniform grid with the same level of minimum granu-

larity, with the density of cells generally following the

density of features [13]. An example is shown in Fig-

ure 5. Note that the side length ratio is common to all

quadrants and is inherited from the dimensions of the

environment. It is possible to add space to the environ-

ment to force quadrants to be square or have any other

desired ratio. Doing so may improve efficiency or be

advantageous with respect to the placement of nodes.

Given a quad tree decomposition of the free space,

the corresponding graph is constructed as follows. For

all pairs of adjacent free quadrants, a node is embed-

ded at the mid point of the border of the smaller of the

quadrants. By definition, a free quadrant is a convex

shape containing only free space. Hence, any node on

the border of a free quadrant has a “line of sight” to all

other nodes on the borders of the same quadrant. We

therefore join such nodes with a complete graph. Since

nodes are shared between adjacent quadrants, this is

sufficient to link all the free space in the environment.

To guarantee that the robotic platform may occupy

any point in free space represented by a node, or travel

the line represented by any edge, prior to building the

quad tree the fixed objects are enlarged in all directions

by a distance greater than the radius of the robotic plat-
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form. In this way no point in the effective free space

is ever too close to a fixed object and all paths in the

graph correspond to plausible paths in the environ-

ment.

4.2. Creating a long term plan

To represent the a priori knowledge about the envi-

ronment we define a “graphmap” data structureM =
(G,W,C,L). G = (N,E) is a graph of the environ-

ment derived from a quad tree, as described in Sec-

tion 4.1. Function W : E → (0,+∞] assigns a

length (the Euclidean distance between the points de-

noted by adjacent nodes) to all the edges of the graph.

Function C : N → (Q,Q) labels each node with

its spatial coordinates in the environment. Function

L : N → P ∪ {uninteresting} labels each node with

its semantic location, where P = {supermarket, bak-

ery, café, etc.} is a set of points of interest.

To generate a long term plan we also define a “work-

ing copy” of the graph map (the working graphmap),

modified according to the AP’s constraints, the cur-

rent crowding and the known anomalies. We denote

the working graphmap M′ = (G′ = (N ′, E′) ⊆
G,W ′, C, L). In general, the graph G′ excludes any

inaccessible subgraphs arising from anomalies or the

AP’s constraints. The weighting function W ′ assigns

an effective length to all edges, which includes the ef-

fects of crowding and the AP’s constraints. The con-

struction of G′ and W ′ are described in Sections 4.3,

4.4 and 4.5.

Given a working graphmap M′ and a (possibly

ordered) set of user-specified points of interest, the

long term planner proposes a path that visits the

points of interest while respecting the AP’s global con-

straints. Formally, given a user-specified set of points

of interest {pj ∈ P}mj=1
, the planner suggests a

path {ni ∈ N ′}ki=1
s.t. ∀pj ∈ {p1, . . . , pm} ∃ni ∈

{n1, . . . , nk} ∧ L(ni) = pj . If the path must re-

spect the order of the specified points of interest,

then additionally ∀ps, pt ∈ {p1, . . . , pm}, ∄ni, nj ∈
{n1, . . . , nk} s.t. s > t∧i < j∧L(ni) = ps∧L(nj) =
pt holds true.

Finding the minimum length path that visits a set of

unordered points of interest is an instance of the well

known NP-hard ‘travelling salesman problem’ [30].

Moreover, given that the overall excursion (includ-

ing stops at the points of interest) may take consid-

erable time, an overall plan optimised for the current

level of crowding may eventually be significantly sub-

optimal if the crowds dissipate. Our approach is there-

fore to optimise each leg of the journey separately, us-

ing the most up-to-date information about anomalies

and crowding.

In simple terms, long term planning works in the

following way. The planner first identifies the node

n0 ∈ G′ that is closest to the AP’s current coordi-

nates (x0, y0). This is given by n0 = argminn∈G′ ‖
C(n) − (x0, y0) ‖. If the AP’s points of interest have

been specified in order, the planner uses Dijkstra’s al-

gorithm to find the shortest path between n0 and the

next unvisited point of interest specified by the AP. If

the AP has not specified an order, the planner uses a

modification of Dijkstra’s algorithm to find the short-

est path between n0 and the closest unvisited point of

interest. Given the trajectory and the AP’s coordinates,

n0 may not be the optimum first node in the path (it

may be effectively behind the AP on the path). The

planner therefore sets the first node of the path to be the

node by which the AP will leave the current quadrant.

The inclusion of time-dependent anomalies makes

the actual long term planning algorithm slightly more

complex. Handling such anomalies is described in Sec-

tion 4.5.

4.3. Global constraints

The AP may specify constraints that affect the long

term plan (e.g., always remain within 50 metres of a

toilet). We call these “global” constraints to distinguish

them from, for example, local constraints that might

be implemented by the short term planner (e.g., don’t

get too close to other pedestrians). Global constraints

may be hard or soft. Hard constraints exclude parts of

the environment that the AP does not wish to visit un-

der any circumstances. They are implemented by re-

moving subgraphs from G. The set of hard constraints

is denoted x ∈ X , where x ⊆ G and two hard con-

straints x, x′ ∈ X are not necessarily disjoint. Hence

G′ = G\
⋃

X . Removing parts of the graph may sig-

nificantly lengthen the planned journey or make it im-

possible, hence the final plan (or lack of it) is presented

to the AP for approval.

Soft constraints make parts of the environment de-

sirable or undesirable to the long term planner, caus-

ing the planned path to deviate towards or away from

them, respectively. They are implemented by defin-

ing a function K : E → [1,+∞] that modifies the

weights of edges to and from desirable and undesir-

able nodes. The function K is applied according to (1),

introduced in Section 4.4. If no constraint applies to

the nodes adjacent to edge e then K(e) = 1. In gen-
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eral, given two nodes n and n′ connected by edges

e = (n, n′) and e′ = (n′, n), for a single constraint

K(e) > K(e′) ⇐⇒ n is more desirable than n′. In

the case of multiple constraints applying to the same

edge e, the value of K(e) is the maximum consider-

ing all constraints. We adopt this approach to avoid the

situation that two constraints effectively cancel each

other and also because our interpretation of desirability

is that it is not simply additive.

In our implementation, soft constraints are specified

using sets of triples (location, radius, intensity), which

respectively define the semantic position, the radius of

influence and the intensity of the constraint. In general,

a constraint creates a gradient of weights that increase

towards undesirable zones and vice versa for desirable

zones.

A function K̃i : [0, radius] → [1, intensity] is de-

fined that maps distance from the border of location i
to the weight of the gradient. This function should be

monotonic non-increasing in case of undesired loca-

tions, and monotonic non-decreasing in case of desired

locations. In both cases its integral should be finite

(i.e., the radius of influence should be finite). Function

K̃i is later used by K(e) for associating the weight to

each edge. It is worth noting that there is high flexibil-

ity in the choice of K̃i, which improves the expressive-

ness of global constraints, allowing per-user customi-

sations (e.g., the profile of attraction to toilets might

be different across users) as well as location based per-

sonalisation (e.g., the profile of repulsion of an open

window is different to that of a flight of stairs).

We assume the existence of a set of constraints

s ∈ S . The location of each constraint defines corre-

sponding sets of either desirable or undesirable nodes

Ns ⊆ N that are not necessarily disjoint. Let d(i, j)
denote the minimum Euclidean path distance from

node i to node j, then for any edge e = (n, n′) ∈ E,

the value of K(e) is given by

K(e) = max
∀s∈S

(

K∗
locations

[

min
n′′∈Ns

(

d(n′′, n′)
)]

)

where K∗
locations

is defined as:

K∗
locations

(r) =

{

K̃locations
(r) if r ∈ [0, radius]

1 otherwise

4.4. Heat maps

Cameras in the environment monitor pedestrian traf-

fic and construct “heat maps” that estimate average oc-

cupancy of the free space over useful time periods,

such as the last five minutes, the last hour or a long-

term average for a particular day and time. The goal

is to use this information to predict the crowdedness

that the AP will encounter and to plan accordingly.

In this work we assume that the current prediction is

valid over the time the AP takes to reach the next point

of interest. If future experience in real environments

suggests this assumption is unreasonable, we will treat

crowdedness in the same way we treat anomalies, i.e.,

as time-dependent.

Each point in the free space is thus assigned a value

in the interval [0, 1], denoting its time-averaged occu-

pancy density. A point with average density 1 is effec-

tively impassable. In practice, not all areas are moni-

tored and monitored areas will be divided into an ar-

ray of square cells of uniform local density. Unmoni-

tored areas are assumed to have zero density. A cam-

era’s view may also include areas occupied by fixed

objects, but such areas are not accessible by any edge

of the graph and their density is therefore not used.

An edge represents a straight line path between the

points in free space represented by its adjacent nodes.

The average occupancy in the area surrounding the line

affects the time taken to travel from one end to the

other. The free space that the short term planner will

allow the AP to explore can be approximated by an el-

lipse whose vertices (“ends”) coincide with the ends of

the line. The area of the ellipse represents the capacity

of the edge, while the heat within the ellipse represents

the amount of capacity that is being used by others. To

calculate the average occupancy of an edge, we inte-

grate the occupancy density over its corresponding el-

lipse. The size and shape of the ellipse is a function of

the edge. For simplicity we define an occupancy func-

tion H : E → [0, 1] that implicitly includes knowl-

edge of the current heat map and performs this integra-

tion. The effective length of an edge is then given by

the function W ′ : E → (0,+∞], defined as

W ′(e) =
K(e)W (e)

1−H(e)
∀e ∈ E. (1)

The intuition behind (1) is that the effective length

of an edge e is proportional to the desirability K(e)
of the destination node and inversely proportional to

the occupancy H(e). When there is zero occupancy,
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H(e) = 0 and the effective length is only related to the

desirability K(e) and the Euclidean distance W (e).
With full occupancy, H(e) = 1, the effective length is

infinite and (1) correctly models the fact that the edge

is impassable.

4.5. Anomalies

During the course of a journey the AP may en-

counter anomalies (semi-permanent obstructions, such

as a wet floor, locked exit, dense crowd, etc.) that

prevent the short term planner from making progress

along the long term plan. An anomaly is represented by

a data structure (g ⊂ G, t ∈ (0,+∞]), where g ⊂ G
represents the inaccessible region of the environment

and t is the estimated remaining time that the anomaly

will last. The set of active anomalies (those with re-

maining time > 0) is denoted a ∈ A. Anomalies are

removed from A when their remaining time reaches 0.

Anomalies exclude parts of the environment, but

their effect is not permanent and is dependent on

the chosen path. When a new anomaly (g, t) is de-

tected by the short term planner, it is added to the set

of active anomalies and its subgraph is immediately

removed from the working graphmap. Symbolically,

A ← A ∪ (g, t) and G′ ← G′\g. The shortest path

to the next point of interest is calculated according to

the procedure described in Section 4.2. The approxi-

mate time of reaching every node in the proposed path

is calculated according to the average speed of the AP.

The new trajectory definitely excludes the recently

detected anomaly, but may include one or more anoma-

lies in A. Hence, the proposed plan is compared to

the subgraphs in the set of active anomalies, to find if

there is any intersection. If there is no intersection the

proposed plan is valid. If the proposed trajectory inter-

sects the subgraph of an anomaly, the time of reach-

ing the anomaly is compared to its remaining time. If

the anomaly will not exist by the time the AP reaches

it, it is ignored. If no anomalies exist by the time the

AP reaches them, the proposed plan is valid. If, on the

other hand, one or more anomalies remain valid by the

time the AP reaches them, their subgraphs are removed

from the working graphmap and the above procedure

is repeated until a valid path is found.

There can be cases where it might be convenient to

wait for the expiration of an anomaly rather than tak-

ing a detour. For example, an anomaly may expire af-

ter one second, while the alternative route forces the

AP to extend her journey by several seconds. To ac-

count for this we propose to implement an heuristic

with a customisable cost threshold based on the AP’s

profile. If the cost of the alternative path is higher than

the threshold, the AP is recommended to wait. If not,

the detour is suggested.

4.6. Time-dependent shortest paths

Our long term planner intelligently avoids looping

paths by regularly updating heat maps and assigning

persistence times to anomalies. In this way the plan-

ner never returns to permanent obstacles, but may take

advantage of crowding and obstacles that clear. Our

current approach with heat maps assumes that crowd-

ing averaged over a period of time in the immediate

past is a good indicator of average crowding for the

same time period in the immediate future. This is re-

liable for short term predictions, but is less so over

the longer term because long term averages may mask

large peaks of crowding. With regard to anomalies, our

planning algorithm takes a cautious approach, assum-

ing that an active anomaly encountered in one pro-

posed path should not be considered in future plans to

the same point of interest.

Algorithm 1 describes the basis of our shortest path

algorithm that considers timed anomalies, heat maps

and user constraints. The algorithm finds the shortest

path between the AP’s current position and the closest

point of interest. If points of interest are required to

be visited in a specific order, it is assumed that the set

Targets contains only those nodes corresponding to the

next point of interest to visit.

The algorithm makes use of several functions. K(e),
W (e) and H(e) are as in (1). Function Edges(n) re-

turns the set of outgoing edges of node n. Func-

tion Dest(e) returns the destination node of edge e.

Function Anomalytime(e) returns the absolute time at

which edge e will be available. This function returns

0 for all edges that are not part of an anomaly. Three

functions are updated during the planning process.

Function Dist(n) returns the currently known shortest

distance to node n. This is initially ∞ for all nodes

except the initial node, for which the function returns

0. Function Pred(n) returns the predecessor of node n,

i.e., the node whose outgoing edge directly connects to

n and gives rise to Dist(n). The function initially re-

turns null for all nodes. Function Time(n) returns the

estimated time to reach node n given the AP’s average

speed (denoted speed). The function initially returns

∞ for all nodes except the initial node, for which it

returns 0.
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Algorithm 1 Shortest path considering anomalies,

heat and constraints
The initial node is the closest node to the AP

speed: the AP’s average speed

Targets: a set of target nodes corresponding to the

AP’s points of interest

Visited: a set of visited nodes, initially containing

the initial node

Unvisited: a set of unvisited nodes, initially contain-

ing all nodes except the initial node

current← initial node

while current 6∈ Targets do

for all e ∈ Edges(current) do

if Anomalytime(e) > Time(current)∨
Dest(e) ∈ Visited then

continue

end if

d← Dist(current)+K(e)W (e)/(1−H(e))
if d ≤ Dist(Dest(e)) then

Time(Dest(e))← Time(current)
+W (e)/(1−H(e))/speed

Dist(Dest(e))← d
Pred(Dest(e))← current

end if

end for

Visited← Visited ∪ {current}
Unvisited← Unvisited\{current}
if |Unvisited| > 0 then

current← n ∈ Unvisited :
Dist(n) ≤ Dist(n′), ∀n′ ∈ Unvisited

else

report no possible path and quit

end if

end while

Output the shortest path: backtrack from current to

the initial node using Pred to identify predecessors

In trying to satisfy the conflicting constraints of dy-

namic motion planning in complex human environ-

ments we have considered many alternatives and re-

finements to our algorithms. There is no off-the-shelf

perfect solution, given the inherent uncertainties and

variability of the problem. In particular, finding time-

dependent shortest paths is known to be hard and is

itself the subject of active research [12,9,10,16]. Our

present approach is a satisfactory compromise between

efficiency and efficacy. We can imagine circumstances

under which it might be challenged, but we propose to

allow further development to be led by problems en-

countered in real applications.

Long term planner

API

Cloud servicesEnvironmental
monitoring

Smartphone APP

Heat maps Anomalies

Environment and map

Constraints

User profilePlan

Fig. 3. Structure of the API. The layers are of increasing abstrac-

tion, where the public interface is flexible and extensible at runtime

by the third-party services. The overall low complexity enables a

broad choice of implementations, from a service in the cloud to a

standalone smartphone app.

5. Implementation aspects

To develop our approach we have implemented two

tools; a map designer and a simulator. The map de-

signer is written in MATLAB and enables the AP to

draw, load and save floor plans, as well as performing

quad tree decomposition and graph construction. The

user is provided with a GUI to freely draw geomet-

ric shapes (Figure 4) and generate the corresponding

graph (Figure 5) to be used in the simulator.

The simulator is written in MATLAB and Java and

allows the user to visually configure global constraints,

heat maps, anomalies and all parameters required by

the long term planner. To judge performance in a final

product, the planning algorithm has been developed in

Java and communicates with MATLAB through the in-

tegrated Java interface.

The algorithm presented in this work has been de-

signed keeping flexibility in mind. We devised an API

that abstracts the low level structures and exposes a

simple but efficient interface. It is divided into a num-

ber of layers depicted in Figure 3. The bottom layer

is represented by the long term planner itself, which

is linked with the top level (the API) via three main

blocks.

The first block is denoted “Environment and map”

and, as the name suggests, allows external services

to access and update information about the environ-

ment. Such data includes the map of static obstacles

and walls, the heat maps and the anomalies. The lat-



A. Colombo et al. / Efficient customisable dynamic motion planning for assistive robots in complex human environments 11

ter can be grouped into categories, two being available

by default: “wet floor” and “destination out of order”.

New categories can be added at runtime upon request

by the third-party services.

The second block, “Plan”, exposes the planning ca-

pabilities. Given the starting position, it is possible to

query for the construction of the optimal path directed

to one or more goals. The planner automatically con-

siders the current status of the environment and biases

the resulting trajectory according to the AP’s prefer-

ences. Moreover, alternative sub-optimal paths can be

generated upon request, for example when the chosen

path is blocked by an unforeseen obstacle detected by

the short term planner.

The last block is the “User profile” and encapsu-

lates the interface for accessing the global constraints

and other user information, such as her location and

the tuning parameters for dealing with anomalies and

crowded areas.

This API can be installed and accessed practically

anywhere, thanks to the low computational burden

highlighted in Section 7.3. For example, it can be pack-

aged in a standalone mobile application for providing

the APs an interactive map of a shopping mall, or im-

plemented as a cloud service, as described in the next

section.

5.1. Case Study: a cloud service

In our case study, presented in detail in Section 8,

we implemented the planner as a service in the cloud.

The interface was written in C++, while efficient Java

was used for the planning part. The standard Java Na-

tive Interface (JNI) provides the link between these el-

ements. We anticipate that a production version will be

entirely implemented in Java, to allow it to be deployed

on a standard portable device under the Android oper-

ating system.

The map of the environment is stored using Spa-

tiaLite1, a lightweight serverless spatial database that

allows performing queries in geometric space. A quad

tree decomposition is then performed on the map and

the resulting graph is used by the planner.

The communication with the remote clients takes

place through exchange of JSON messages over a TCP

link, in a request-reply mechanism, where the planner

acts as a server.

1http://www.gaia-gis.it/gaia-sins/

Fig. 4. Screenshot of the map designer tool showing an example floor

plan. Enables the user to create maps and generate the associated

graph, compliant with the long term planner.
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Fig. 5. Graph and a sample path generated from the map depicted in

Figure 4.

6. Qualitative analysis

The chosen floor plan for the validation is a large

room of approximately 200 m2 with two non-aligned

central columns. The starting point is set at the left

hand side of the map, midway along the shortest wall.

The goal is set at the opposite side of the room, such

that the shortest path connecting the starting point to

the goal is a horizontal straight line.

In the remainder of this section we will go through

each feature separately and, finally, show a more com-

plex simulation combining different features.

6.1. Global constraints

We show how the planner is able to deal with the

user preferences when computing the plan. In the first

simulation we put an undesirable zone in the middle of

the room, overlapping the shortest path. In the second

simulation, we instead identified a desirable zone (e.g.,

a restroom) close to the top wall of the map without

interfering with the shortest path. In both simulations
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Fig. 6. Simulation with constraints. The picture shows two indepen-

dent simulations of how the planner deals with desirable and unde-

sirable zones. The continuous line is the result of the constraint “stay

close to the desirable zone” and “stay away from the undesirable

zone”, while the dashed line addresses only the latter.
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Fig. 7. Simulation with a heat map. The path computed by the plan-

ner is represented by the continuous line and bypasses the crowded

region in the middle of the map (i.e., yellow area). The preference is

for cold zones (i.e., blue-coloured areas).

the radius of the constraints is set to 1.5 m and the

intensity is set to 2.

We ran these two simulations separately and the re-

sults can be seen in Figure 6. The planner correctly

takes the constraints into account by properly bending

and extending the original shortest path.

Should the undesirable zone be the only possible ac-

cess point for reaching the goal, the planner can violate

the constraints as long as the intensity is not −∞ (i.e.,

never touch the undesirable zone).

6.2. Heat maps

We placed one rectangular shaped heat map in the

centre of the room, covering the whole space between

the two columns and the walls at the top and bottom

of the figure. The planner is thus forced to go through

the area covered by the heat map to reach the goal. We

ran 50 simulations with different heat distribution gen-

erated by a sum of bivariate Normal probability den-
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Fig. 8. Simulation with anomalies: two independent simulations are

shown. The dashed line represents the path generated when the

anomaly is set to expire half way to the goal. The continuous line,

instead, shows the resulting path when the anomaly does not expire.

sity functions (normalised to the range [0, 1]) with ran-

dom parameters. In all cases the planner correctly took

into account the presence of the heat map. The out-

come of one particular simulation can be seen in Fig-

ure 7, where the planner properly avoids hot (yellow-

coloured) zones.

6.3. Anomalies

To test the handling of time based anomalies we set

the average user speed to 0.5 m/s and we placed a rect-

angular anomaly in the middle of the room. Figure 8

depicts two paths constructed by the long term plan-

ner during two independent simulations with different

durations of the anomaly. In this way we are able to

show how the planner manages the disappearance of

an anomaly. In the first run (dashed line) we config-

ured the expiration of the anomaly in such a way that

it expires when the user has covered approximately

half of the path. In the second run (continuous line)

the anomaly disappears after the user reaches the goal

position. It is clearly visible that, in the first case, as

soon as the anomaly expires the planner re-routes the

user towards the shortest path, overlapping what was

the area occupied by the anomaly.

6.4. Combination of features

The last validation test considers a combination of

multiple features in one simulation. We placed one un-

desired zone, one desired zone, one anomaly and one

heat map as shown in Figure 9. In particular, the unde-

sired zone completely blocks the passage for reaching

the goal. However, as visible in the previous figure, the

long term planner is able to ignore the unfeasible con-
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Fig. 9. Simulation with multiple features. The planner satisfies all the

AP requests, but is forced to ignore the constraint for the undesired

zone, as it is the only way for reaching the goal.
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Fig. 10. Relation between level of crowdedness and effective length

of the path. When the planner is aware of the heat maps in the envi-

ronment, the long term planner is able to avoid the heat and the ef-

fective distance increases slowly with increasing crowdedness (thick

line). Without this information, the long term planner just chooses

the shortest Euclidean path, whose effective length increases expo-

nentially.

straint. The path then bends towards the desired zone,

bypasses the unexpired anomaly and, finally, avoids

the crowded region represented by the heat map.

7. Quantitative analysis

We now go through the results of some simulations

providing a quantitative analysis of the performance

of the long term planner. The aim is to show that the

benefits of using the long term planner are evident not

only from a qualitative point of view, as shown in Sec-

tion 6, but also from a well-defined set of performance

metrics.

7.1. Heat maps

We demonstrate that the long term planner is able

to provide better (i.e., quicker) trajectories when it is

aware of the crowdedness in the environment.

We set up a simulation similar to the one in Sec-

tion 6.2, where the heat map covers the environment as

in Figure 7. We then iteratively increase the heat sur-

face, simulating an expanding crowd, starting from no

crowd (0% crowdedness) up to a completely crowded

area (100% crowdedness). At each iteration we call the

long term planner and we compute both the optimal

path (e.g., considering the heat encoded in the effec-

tive distance) and the Euclidean shortest path (e.g., a

straight line directed to the goal that passes through the

crowded area).

The Euclidean shortest path Ne = {ni ∈ N ′}ki=i

is constructed by assuming H(e) = 0 in (1). The

true cost We of Ne is then computed by removing the

H(e) = 0 assumption, thus

We =
∑

W ′(e), ∀e = (n, n′) ∈ Ne

The results are shown in Figure 10. The very slow

growth of the effective length of the path considering

heat (thick line) is clearly visible. The planner diverts

the path to avoid the hot areas until this becomes im-

possible (i.e., when crowdedness reaches 100%). In

contrast, the effective length of the Euclidean short-

est path explodes exponentially (thin line), making the

planner unable to find a path when the average crowd-

edness level is greater than 5%.

7.2. Global constraints

The simulations presented in this section show how

the planner interprets the intensity parameter of an un-

desired or a desired global constraint. The environment

and the position of the desired/undesired locations are

the same as those considered in Section 6.1 and illus-

trated in Figure 6. We identified this particular scenario

because it is a worst case situation: the desirable loca-

tion is at the farthest possible distance from the short-

est path and the undesirable location conflicts with the

shortest path.

For simplicity and without any loss of generality,

in these simulations we define K̃ as a linear func-

tion that is monotonically increasing for desired con-

straints, and monotonically decreasing for the unde-

sired ones.
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Fig. 11. The effect of intensity on the minimum Euclidean distance

from a path to a desirable zone on a particular simulation run. As in-

tensity increases the path is attracted towards the desirable location:

the Euclidean distance decreases.
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Fig. 12. The effect of intensity on the minimum Euclidean distance

from a path to an undesirable zone on a particular simulation run. As

the intensity increases the path is pushed away from the undesirable

location (the Euclidean distance increases) until it approximates the

specified radius (20 m, dashed line). The constraint is actually im-

plemented with respect to the effective length of the path, which is

shown for comparison.

To measure the characteristics of a constraint for a

desirable zone, we set the location as far as possible

from the Euclidean shortest path and we fixed the ra-

dius to a small value. We then iteratively executed the

planner with increasing intensity and we computed the

minimum direct Euclidean distance of the path from

the location (i.e., not considering the graph). The re-

sults are reported in Figure 11. As expected, the mini-

mum Euclidean distance between the path and the de-

sirable zone decreases as intensity increases. The steps

in the plot are due to the quantisation of the free space

imposed by the underlying graph.

A similar procedure was carried out using a con-

straint for an undesirable zone. We set the location

of the constraint midway along the Euclidean shortest

path and fixed the radius of the constraint to be the

largest possible value (in the simulations the limit is

the distance from farthest wall). The intensity of the

constraint was then iteratively increased and we com-

puted the minimum direct Euclidean distance of the re-

sulting path from the location. The results are shown

in Figure 12. We observe that as the intensity grows,

the planner “pushes” away the constructed path until

the minimum Euclidean distance is close to the radius.

Again, the steps in the plot are due to quantisation of

the free space.

The relations highlighted in these paragraphs are

strictly dependent on the considered environment. Dif-

ferent locations, position of obstacles or constraints

lead to different relations. An open problem, to be ad-

dressed in future work, is how to generalise the rela-

tionship between these parameters.

7.3. Computing time

We tested the performance of the long term plan-

ner on the BeagleBoard xM2, an affordable embedded

board equipped with an ARM processor running at 1

GHz with 512 MB LPDDR RAM. The operating sys-

tem is Ubuntu 12.04 and the Oracle Java Virtual Ma-

chine 1.8.0 u6 is installed.

Our goal was to verify the feasibility of an online

implementation in a realistic scenario and the scalabil-

ity of the performance with increasing dimensions of

the graph. We thus designed a map of a large shop-

ping mall (500 m x 250 m) and performed quad trees

decomposition (Section 4.1) with different minimum

quadrant resolutions, varying from 4 m to 0.8 m. This

way the resulting graphs had different sizes, from 1686
nodes and 13832 edges, to 23016 nodes and 264026
edges.

For each graph we prepared a benchmark script that

sets up the Java planning algorithm and queries 20

times for a path between the same two points at the op-

posite sides of the shopping mall. We then timed both

the setup phase (e.g., loading the graph structure in the

planning algorithm) and each of the planning queries.

Finally, we computed the mean (µ) and standard devi-

ation (σ) of the timings.

The results are reported in Table 1. The worst case,

as expected, occurs with the largest graph. In this case

we measured µ = 1983 ms and σ = 239 ms for the

setup phase, and µ = 812 ms and σ = 139 ms for the

query phase. These results are encouraging and show

2http://beagleboard.org
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Table 1

Performance of the long term planner on a BeagleBoard xM with

different graph dimensions for both setup and query phase. Mean

(µ) and standard deviation (σ) are reported for each phase.

Minimum Graph size Setup [ms] Query [ms]

quad tree cell [m] Nodes Edges µ σ µ σ

4.0 1686 13832 78 35 56 61

2.0 4404 43720 282 141 163 117

1.0 10133 108818 829 354 361 176

0.8 23016 264026 1983 239 812 139

that the current implementation, which we believe can

easily be improved, is already reasonably fast for an

online execution. Finally, it should be noted that in real

scenarios the setup phase needs to be executed only

when the graph structure (i.e., the floor plan) changes

permanently.

8. Case study: the DALi project

Motivated by the same considerations presented in

this paper, the DALi project3 aims to devise the c-

Walker, an intelligent “walker” (an assistive wheeled

device) that detects the presence of other pedestrians

in the environment, anticipates their intent and plans

an appropriate path that is suggested to the user via a

combination of audio, visual and haptic interfaces.

The motion planning algorithm is part of the so-

called “Cognitive Engine” and follows the diagram de-

picted in Figure 1. In this particular case, the long

term planner is the algorithm proposed in this work

while the short term planner outputs a suggested tra-

jectory and is reactive to the potentially uncooperative

response of the AP [7].

8.1. Experiments

In October 2014 we ran an experimental campaign

that involved several elderly people at our facilities.

The goal was to test the functionalities of the walker as

well as of the motion planning algorithm. To this end,

we created a simulated shopping mall environment and

recruited a cohort of 12 senior users. We asked each

participant to choose a destination in the environment

(Figure 13(a)) and then to follow the guidance sugges-

tions of the walker.

3http://www.ict-dali.eu

At the end of each test we collected results on the

participant’s performance and asked her/him to answer

some questions about the quality of the guidance sug-

gestion and personal satisfaction.

In addition, we selected a group of caregivers work-

ing in protected residences and proposed to each of

them a tour through the functionalities of the system,

where each of them could define hard and soft con-

straints and test the system. During each test we ran-

domly triggered anomalies (Figures 13(b) and 13(c))

and heat maps (Figure 13(d)) to show the reactions

of the system to such conditions. At the end of the

“road show”, we collected informal opinions and sug-

gestions.

The impression we derived from reading the ques-

tionnaires collected from the APs and from talking to

the care givers was of a general interest and apprecia-

tion toward the system and its functionalities (includ-

ing the long term planner). Most users are keen on be-

ing actively engaged with future development activi-

ties. This motivates us in pursuing this line of research

in the upcoming years.

9. Conclusions

In this work we have presented an algorithm for

long term motion planning in crowded public spaces.

The algorithm applies to robotic platforms assisting

the navigation of senior users in large and complex

spaces. Key features of the algorithm are: 1. the abil-

ity to encode preferences in the user’s profile on ar-

eas that should be avoided during the navigation and

others that should be travelled across, 2. the consider-

ation of time-dependent anomalies in making the right

choice for a path, 3. the inclusion of crowdedness as a

key parameter to take into account when estimating the

time to complete a path. Our idea is to use quadtrees to

generate a graph structure describing the space and en-
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(a) Tablet interface for the long term planner

(b) Wet floor sign

(c) The long term planner reacts to the wet floor sign

(d) Heat map

Fig. 13. Pictures from the DALi project experimental campaign.

code user preferences, anomalies and heatmaps in the

weight of the edges. We propose a modified version

of the Dijkstra algorithm to identify the optimal path

accounting for the time dependencies of the graph.

Our algorithm has been implemented as a cloud

service that operates alongside a module for reactive

(short term) planning and motion control, which are

typically hosted on the robotic platform. Thanks to its

flexible API and its low computational burden, the al-

gorithm can be easily implemented in different ways,

giving to the system integrators plenty of possibilities.

The different functionalities of the system have been

validated in two ways. We have tested it through sim-

ulation scenarios and prepared a mockup simulating a

realistic case study where the system was tested by a

group of users and showcased to a group of caregivers.

This case study helped us to identify some border-

line scenarios that require further analysis, especially

when dealing with combinations of constraints. For

example, when the user requires a “timed” constraint

(e.g., “keep a toilet within 5 minutes walking dis-

tance”), when several constraints for desirable and un-

desirable zones appear to be placed one after the other,

or when two or more constraints for desirable zones

are placed at opposite ends of an environment. Simula-

tions have shown that combinations of contrasting re-

quests can be managed efficiently, even though an ex-

tensive analysis of this behaviour has not been carried

out in the field. Nonetheless, the simplicity and the ro-

bustness of the proposed solution is very promising for

an efficient handling of such complex situations.

Our future plans include lifting the planning algo-

rithm to a social dimension, with motion plans organ-

ised for groups of people supported by a robotic plat-

form, supporting constraints and anomalies specified

in a probabilistic framework.
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