
Probabilistic Real–Time Guarantees:
There is life beyond the i.i.d. assumption

Bernardo Villalba Frı́as, Luigi Palopoli, Luca Abeni, Daniele Fontanelli
University of Trento

Trento, Italy
{br.villalbafrias, luigi.palopoli, luca.abeni, daniele.fontanelli}@unitn.it

Abstract—A large class of modern real–time applications
exhibits important variations in the computation time and is
resilient to occasional deadline misses. In such cases, probabilistic
methods, in which the probability of a deadline miss can be
guaranteed and related to the scheduling design choices, can be
an important tool for system design. Several techniques for prob-
abilistic guarantees exist for the resource reservation scheduler
and are based on the assumption that the process describing the
application is independent and identically distributed (i.i.d.). In
this paper, we consider a particular class of robotic application
for which this assumption is not verified. For such applications,
we have verified that the computation time is more faithfully
described by a Markov model. We propose techniques based on
the theory of hidden Markov models to extract the structure
of the model from the observation of a number of execution
traces of the application. As a second contribution, we show how
to adapt probabilistic guarantees to a Markovian computation
time. Our experimental results reveal a very good match between
the theoretical findings and the experiments.

I. INTRODUCTION

In the last years, probabilistic design has emerged as a
viable option for a large class of real–time systems for which
the strict respect of all the deadlines is not really needed.
In many applications, the cost of overdesigning the system
outweighs the possible advantages of respecting every single
deadline. This is obviously true for multimedia applications
(e.g., streaming or surveillance). As surprising as it may seem,
the same applies to many robotic control applications, which
are resilient to occasional and controlled timing failures [1],
[2]. This opens the way for important opportunities to optimise
the design of robotic systems and to reduce their costs.

Key to a provably correct probabilistic design of a real–time
system is the availability of analysis algorithms that allow the
designer to guarantee probabilistic deadlines. Contrary to a
standard “deterministic deadline”, a probabilistic deadline is
associated with a probability that it will be respected. The
flexible concept of probabilistic deadline allows the system
designers to capture the multi–faceted requirements of time–
sensitive applications and to reason about the impact of their
scheduling choices on the performance of the system in
stochastic terms.
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In this setting, guaranteeing the analysis of probabilistic
deadline amounts to finding if the deadline will be met with
the desired probability for a candidate choice of scheduling
parameters. In this paper, we deal with probabilistic guarantees
for a class of real–time applications, which are at the heart of
many modern robotic systems.

A. Related Work

Stochastic analysis of real–time systems has been proposed
in different flavours. A number of results revolve around the
popular notion of “probabilistic worst–case execution time
(pWCET)” [3]. The idea is that for each execution, a task
experiences a worst–case execution time (WCET), which
changes depending on the input data set and on random effects
in the system hardware (e.g., due to the presence of a cache).

The notion of the pWCET allows the designer to provide
hard real–time guarantees through standard techniques (e.g.,
response time analysis [4]) and associate the result with a
level of confidence given by the distribution of the pWCET.
An example is the generalisation of the Real–time Calculus
using pWCET presented in [5]. The pWCET can be derived
from measurements, using statistical techniques grounded in
the Extreme Value Theory (EVT) [6].

However, for the category of soft real–time applications
considered in this paper, designers are interested in the QoS of
the application (e.g., measured by the frequency of deadline
misses) during every single run, rather than in the probability
that for all possible runs a deadline will be violated.

In such situations, the notion of probabilistic deadlines [7]
comes to the rescue. While a standard “deterministic deadline”
must always be respected, a probabilistic deadline is allowed to
be violated with a given probability. A probabilistic real–time
guarantee is a statement that the deadline will be respected
with a probability at least equal to the one specified in the
probabilistic deadline.

The analysis of probabilistic guarantees is rooted into per-
formance analysis and queueing theory [8]. Different tech-
niques have been proposed for fixed–priority [9], [10], [11],
[12], [13], [14] or Earliest Deadline First (EDF) sched-
ulers [15]. A problem with fixed priority or EDF is that
the stochastic model describing the task set is very complex
and difficult to analyse because of the scheduling interference
between tasks.



If reservation–based schedulers are used instead [16], each
task executes as if on a dedicated computer and its behaviour
can be analysed independently of the other tasks (temporal iso-
lation property). This radical simplification makes the model
easy to construct and to analyse, and brought different authors
to develop efficient numerical methods [17], [18] or analytic
bounds [19], [20], [21].

However, all the models proposed so far, for stochastic
analysis of reservation–based systems, make the assumption
that the computation time of the task is independent and
identically distributed (i.i.d). While this assumption does not
impair the application of the analysis in many cases of interest,
this may not be true for many robotic applications. For
instance, for the computer vision applications that mobile
robots use to sense the environment, it can be argued that
the computation workload depends on the complexity of the
scene. Pictures shot in close sequence are likely to require
the same computation time, which can change in magnitude
when the robot moves towards an emptier area. This effect
introduce a potentially strong correlation in the stochastic
process describing the computation time, reducing the appeal
of techniques developed for i.i.d. processes.

B. Paper Contribution

Randomised methods are a frequent encounter in robotics.
In a general sense, we could say that randomised search is
useful and beneficial every time a design or a decision space
has to be explored without the possibility of exploiting the
structure or the mathematical properties (e.g., complexity) of
the model. In the wide class of robotic applications using
randomised methods, we will consider a localisation method
based on computer vision as a paradigm. In the experiments
reported for the paper (and in many more, which are left out
for the sake of brevity), the process describing the computa-
tion time is not i.i.d. and it shows an important correlation
structure. Such a structure can be described by a Markovian
model: the system operates in different modes and in each
and every mode it generates computation times modelled as a
random variable.

The first contribution of the paper is to show how to identify
the different modes and the distribution of the random variable
in each mode using the theory and the techniques developed
for hidden Markov models (HMMs). The second contribution
is the extension of the probabilistic guarantees for Resource
Reservations, initially developed for the i.i.d. processes, to the
case of Markovian computation time. Our results reveal a strict
adherence of the theoretical results with the experiments.

Although the results of the paper are shown for a particular
class of applications, our lab experience reveals that the ap-
plicability range of the technique is much larger and includes
other classes of applications based on randomised methods
(e.g., motion planning).

The paper is organised as follows. Section II offers a
general introduction to the problem of probabilistic guarantees.
Section III gives a general overview on randomised methods
in robotics and offers more details on the specific application

considered for the analysis presented in the paper. Section IV
describes the specific type of stochastic process used to model
computation time with Markovian switches. In Section V,
we show the adaptation of probabilistic guarantees to the
Markovian computation time. Section VI reports a number of
experimental results showing the good match between theory
and experimental data. Finally, in Section VII we state our
conclusions and outline future work directions.

II. PROBABILISTIC GUARANTEES FOR CPU
RESERVATIONS

This section contains the basic definitions used in all
the techniques that provide probabilistic guarantees for
reservation–based systems and the resulting problem state-
ment. This material is by and large translated from previous
work [20] and reported here for the reader’s convenience.

A. Task Model

In general, a real–time task τi consists of a sequence,
possibly infinite, of jobs Ji, j with j ∈ Z>0. Each job Ji, j is
activated at time ri, j and finishes at time fi, j after executing
for an amount of time ci, j . The computation time of each
job, ci, j , is assumed to be a stochastic process Ci. Contrary
to previous work, we do not assume here the process to be
independent and identically distributed (i.i.d). Rather, we will
assume it to be a Markov Modulated Process (MMP), as
detailed below.

The job Ji, j is also characterised by a deadline di, j =
ri, j+Di (where Di is said relative deadline), that is respected
if fi, j ≤ di, j , and is missed if fi, j > di, j .

This paper is restricted to periodic tasks, meaning that two
adjacent arrivals are Ti time units away from each other:
ri, j = ri, j−1+Ti. Additionally, traditional hard deadlines di, j
are replaced by probabilistic deadlines [22]. A probabilistic
deadline (Di, βi) is respected if Pr {fi, j > ri, j +Di} ≤ βi.
If βi = 0, the deadline is considered hard.

B. The scheduling algorithm

In this paper, we will assume the use of a reservation-based
scheduling strategy. Although any algorithm implementing
CPU reservations could be used, we will adopt the Constant
Bandwidth Server (CBS) [16], a scheduling policy based on
the EDF strategy and available in the mainline Linux Kernel
under the name of SCHED_DEADLINE [23].

A reservation is a pair (Qsi , T
s
i )1, where Qsi is the amount

of time that the task is allowed to use the resource within every
reservation period T si . The fraction of resource utilization
dedicated to task τi is given by Bi = Qsi/T

s
i and it is usually

called bandwidth.
The CBS algorithm works by assigning dynamic scheduling

deadlines to the tasks, and then, scheduling the tasks by
applying EDF on the scheduling deadlines. If the tasks cannot

1The s superscript stands for “server” and it means that the two parameters
are associated with the CBS, while and the i subscript refers to the task served
by the CBS.



migrate between CPU cores, and for each core the parameters
assigned to the different tasks are such that∑

i

Bi =
∑
i

Qsi
T si
≤ 1, (1)

then each task is guaranteed to receive Qsi units of execution
time within every reservation period T si . This property is called
temporal isolation and is key to the derivation of the stochastic
model of the resource reservation presented in our previous
work [20] and recalled in Section V.

C. Problem Statement

In view of the temporal isolation property, each task is
guaranteed a minimum share of the processor Qsi/T

s
i inde-

pendently of the behaviour of the other tasks (as long as Con-
dition (1) is respected). We observe that the temporal isolation
provided by the CBS is related to processor scheduling. In a
complex multi–core environment, other types of interference
between the execution of the tasks could come from conflicts
on the memory bus or from cache–related delays. We will
assume that such effects can be neglected and that the temporal
isolation property can be applied in a broad sense.

In this setting, we will carry out a conservative analysis
for each task assuming that it only receives its minimum
guaranteed bandwidth with no interference from the other
tasks. The result will be a lower bound for the probability
of meeting the deadline. Since the evolution of each task is
studied in isolation, we can safely remove the subscript i.

In this setting, our problem is formulated as follows.
Problem 1: Given a periodic real–time task with a stochastic

computation time, find conditions on the reservation param-
eters (Qs, T s) such that the task respects the probabilistic
deadline (D, β).

III. RANDOMISED METHODS IN ROBOTICS

In the large class of robotic applications that can benefit
from randomised methods, two deserve a special mention:
• computer vision algorithms used to extract information of

interest from a scene captured using on–board cameras,
• path planning.
In the group of computer vision algorithms falls the popular

RANSAC algorithm and its numerous derivatives [24]. This
algorithm has been invented to interpret the sensed data in
terms of predefined models, which typically correspond to
known objects or landmarks.

Classic algorithms (e.g., based on least square analysis)
consider all the data presented to the algorithm and are not
able to single out and reject gross deviations from the model.
Single gross deviations correspond to unexpected findings and
are frequently encountered when travelling across an unknown
environment. They are considered as “poisoned points” also
for heuristic algorithms and can significantly impair the scene
analysis.

To address the problem, the RANSAC algorithm proposes
to select random points in the scene, instantiate the model on
a subset of the data and measure the deviation. The procedure

is repeated until a good consensus is reached between the
selected subset and the model. This paradigm is easy to
understand and implement, and it usually delivers excellent
results in extracting the meaningful information from the
scene.

In the class of the planning algorithms we find popular
randomised methods such as Rapid–Exploring Random Tree
(RRT) [25], or its recent development called RRT* [26]. The
path planning problem is about finding a collision–free path
that connects two points in the work space such that its
curvature is required to be compatible with the kinematic and
the dynamic constraints of the robot.

Both algorithms follow an iterative approach using a ran-
domised search. For instance, RRT constructs two trees: one
starting from the origin and one from the destination. In
each iteration, a random number of points are selected and
connected to the ones found at the previous step (cancelling
the points that would determine a collision). The procedure
stops when the two trees intersect. The algorithm selects
the path along the tree with the minimum costs using a
simple greedy heuristic. The advantage of using randomised
algorithms is that we do not need any prior knowledge on
the environment (e.g., concerning the presence of obstacles),
which is “discovered” during the construction of the trees.

Vision and planning algorithms have to be executed in real–
time while the robot is on the move. As an example, for a
mobile robot of the size of a small vacuum cleaner, moving
in a crowded space at 0.5 m/s, the planning can be safely
executed three times per second (once every 400ms).

The vision algorithm is used to localise and, ultimately,
to control the vehicle. Therefore, it needs to produce the
data more frequently. Moving at the moderate speed of our
example, 200 ms could be an acceptable sampling time.
Clearly, if the speed of the robot increases, so the sampling
frequency will also need to increase. Since it is a known fact
that occasional timing failures can be acceptable for this type
of systems [27], [1], we can easily trade such a possibility
for a higher “average” sampling rate. However, an accurate
assessment of the probability of these occasional failures is
key to a correct design.

We now discuss in detail the application that we will use
as case study for this paper and concentrate on the evolution
of the computation time.

A. The lane detection algorithm

The lane detection algorithm summarised below is used in
some mobile robot applications developed in our department
(see Figure 1). The goal of the algorithm is to determine the
position of the robot with respect to a line delimiting the lane
(see Figure 2). More specifically, the expected output of the
algorithm is the distance yp of the centre of the vehicle from
the line and the angle θp between the longitudinal axis of the
car and the line.

The pair (yp, θp) can be used to control the lateral position
of the vehicle in the lane. Unsurprisingly, if the vehicle travels
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Figure 3. Sequential analysis of the image performed by the lane detection algorithm.

Figure 1. Robotic car used for the experiments. The lane detection algorithm
is executed on the on–board platform.
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Figure 2. Vision system set–up: the real camera (looking at the road) and
the virtual camera (looking from above)

at a high speed, the sampling period has to be rather small
(although occasional deadline misses can be tolerated).

The algorithm is described in previous literature [28]. For
the reader’s convenience, we summarise here the main steps
of the work flow:

1) The first step is a preprocessing of the image frame
captured by the camera, in which the image size is
reduced and the edges are detected to identify any rele-
vant feature of the image (e.g. the line to be followed).
Looking at the sample image in Figure 3 and moving
from left to right, we can observe the image resizing
and the canny filtering that extracts the edges, filtering
out unnecessary elements.

2) Using an Inverse Perspective Mapping (IPM) technique,
the scene observed by the “virtual” camera, flying above
the scene, is reconstructed from the scene viewed by the
actual camera. For the sample image in Figure 3, this
corresponds to the fourth step.

3) By means of a RANSAC–based estimation algorithm,
the position and orientation of the parallel lines in the
“virtual” image are detected. The parallel lines sought in
the image have to comply with an a priori model (e.g.,
the distance between the lines is known).

4) Finally, the position and orientation of the robot with
respect to the actual line is computed. This information
is then used to control the robot while moving in the
environment.

The algorithm described above is suitable for real–time im-
plementation even on a cheap hardware platform. For instance,
we have compiled the algorithm for an ARM 9 platform and
executed it on the WandBoard2 mounted on the mobile robot.
The robot executed a linear path in the laboratory and its task
was to follow a black ribbon unfolded on the floor and used
as a lane delimiter.

In Figure 4, we report an excerpt of the trace of the
computation times for a sequence of 900 jobs. As we can see,
the computation time fluctuates but it has recognisable trends,
which are revealed by the moving average of 25 samples
drawn in red and superimposed on the trace. Such trends are
obviously reflected into the autocorrelation function plotted on
the right part of the figure. By inspecting the autocorrelation

2www.wandboard.org
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Figure 4. The left plot shows the computation times (dotted line) of the
images taken by the robot while navigating the environment along with a
superimposed (solid line) moving average to highlight the trend. The right plot
shows the autocorrelation function of those computation times for different
“lags” or time instants.

plot, we can see that a sample of the computation time is
not only strongly correlated with the previous ones, but the
correlation extends quite far into the past (the normalised value
of the correlation remains greater than 20% even 20 samples
behind).

In other words, the computation time of a job depends on
the computation times of the previous jobs, hence it cannot
be described using a simple probability distribution function
C(c) = Pr {cj = c}, as done in previous works [22], [17],
[20]. As a consequence, more advanced mathematical tech-
niques have to be used to properly and more precisely describe
the computation times. Such techniques will be introduced in
the next section.

IV. THE MARKOV COMPUTATION TIME MODEL

The randomised nature of the algorithms described in Sec-
tion III generates a random computation time even for multiple
executions on the same input data. However, as long as the
input data set has the same complexity, the computation time
will be of comparable magnitude. When the input data changes
(e.g., due to a change in the scene), the computation time
is likely to grow or decrease (although there will still be
significant random fluctuations).

This switching behaviour introduces correlation in the
stochastic process that models the computation time, hence,
as previously noticed, it is not possible to describe the com-
putation times of a task using a simple probability distribution.

A possible way to work around this issue is to find some
kind of structure in the correlation between computation times,
and to describe such a structure with some stochastic model.

The switching behaviour highlighted above suggests that it
could be possible to describe the computation times within the
limits of a tractable model by describing the different operating
conditions of the system with a finite number of states (N ).
In each of these different modes, the computation time is
described by a random variable; if the computation times
for each mode are independent and identically distributed
(i.i.d.), then it is possible to describe such random variables
by associating a probability distribution to each state.
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Figure 5. Example of scene variation with the corresponding mode change.

0 20 40

Lag

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n

Mode # 1

0 20 40

Lag

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n

Mode # 2

0 20 40

Lag

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n

Mode # 3

0 20 40

Lag

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n

Mode # 4

Figure 6. Autocorrelation function obtained from the 4 different modes in
which the computation times presented in Figure 4 were classified.

This idea is well expressed by the lane detection algorithm
reported in Figure 5. On the left hand side, we observe an
execution of the algorithm on a “clean” frame. On the right
hand side, we observe the execution of the same algorithm on
a “noisy” frame, in which the computation time required to
extract the lines is presumably much higher.

If the transitions between the different system states can
be defined as a Markov process, the model just described
corresponds to a particular type of non i.i.d. process that occurs
very frequently in the applications, under the name of Markov
Modulated Process (MMP) [29]. To be precise, since the state
of the Markov chain is not directly accessible / observable
(only the computation times are observable), the model can
also be defined as a hidden Markov model (HMM). HMMs
are very popular in several disciplines, such as economics and
biology [30].



In this paper, we will show that a HMM can be used to
model the evolution of the computation times for a large class
of robotic applications, and that some probabilistic analysis
developed for i.i.d computation times can be adapted to work
with this non i.i.d model.

Given our specific application, we will name the model a
Markov Computation Time Model (MCTM). A precise defini-
tion is offered next.

Definition 1: A Markov Computation Time Model (MCTM)
is defined as the triple {M, P, C}, where
• M = {m1, . . . , mN} is the set of modes;
• P = (pa, b), with a and b ∈ M, is the mode transition

matrix. The element pa, b defines the probability that, at
the next step, the mode mj will be b given that, at the
previous step, mj−1 was equal to a:

pa, b = Pr {mj = b |mj−1 = a} ;

• C =
{
Cmj

: mj ∈M
}

is a set of distributions char-
acterising the computation time in each mode. Each
distribution is described by the Probability Mass Function
(PMF) since the computation times can only take values
that are multiples of the processor clock. Therefore, with
this notation, Cmj

(c) represents the probability that the
computation time is equal to c when the system executes
in mode mj .

Hence, every mode has an associated probability distribution
for the computation times, and the mode transitions determine
changes in the distribution of the computation time. We will
make the following (reasonable) hypotheses:

Assumption 1: For every job Jj , the computation time cj is
a random variable described by the distribution Cmj

, which
only depends on the current mode mj of the MCTM. The tran-
sitions between modes happen according to the probabilities
pa, b. Furthermore, the “mode change” event is independent
both from the current computation backlog and from the
computation time required by the previous execution.

Remark 1: The process governing the mode change is
typically rooted in the physics of the system (e.g,, a robot trav-
elling in a space and encountering an obstacle). Therefore, the
assumed independence between the length of the computation
time and the mode change is reasonable.

What is more, the mode change is generally asynchronous
with respect to the start of the job, and it could, in reality,
take place in the inter–sample period between the arrival of
two jobs. However, for the purposes of the system, the mode
change event has an effect on the computation time only in
the next period (when a new sample is collected). Therefore,
the synchronous assumption made above is also perfectly
reasonable.

A. Estimating the parameters of the lane detection

In order to analyse the (probabilistic) schedulability of the
system, it is important to accurately describe the computation
times of a task using the MCTM; in other words, the values
of M, P and C must be identified. In literature, this is know
as the HMM Learning problem: given a sequence of measured

computation times, find the parameters of the HMM that
describe such a sequence in the best way. More formally, find
P and C that maximize the Likelihood (probability that a given
sequence of values is generated by the identified HMM).

Fortunately, it is possible to re–use a huge corpus of
powerful techniques that have been previously developed
for working with HMMs: in particular, the HMM Learning
problem can be solved by using the well–known Baum–Welch
algorithm [31].

Given a sequence of observed computation times
c0, . . . , cX , the set of hidden states M = {m1, . . . , mN},
and the probabilities πi to be in an initial state mi, the
Baum–Welch algorithm iteratively estimates the transition
matrix P and the output matrix C starting from two initial
guesses P(0) and C(0). The two initial guesses can be
randomly generated, and the iteration will generally converge
to the maximum likelihood matrices.

At each step of the iteration, the two estimations P(l) and
C(l) are used to compute the probability ξj(i, k) for the HMM
to be in state mi when job j arrives and in state mk when
job j+ 1 arrives, given the sequence of observed computation
times c0, . . . , cX . The probabilities ξj(i, k) can then be used
to compute the next estimations P(l+1) and C(l+1) and the
iteration stops when the variations in the estimations are
small enough, or when a maximum number of steps has been
reached.

Once the state transition matrix and the output probability
distributions have been estimated, they can be used as an input
for the analysis technique described in Section V. However,
it is first important to check if the identified MCTM correctly
describes the computation times of the application. To do this,
each observed computation time can be associated to a hidden
state, so that the sequence c0, . . . , cX is split in N sub–
sequences (one sequence per MCTM state), the independence
of each sub–sequence can be tested, and the autocorrelations
can be computed. This can be done by generating the most
likely sequence of internal states for the identified MCTM
given the computation times sequence c0, . . . , cX . Such a
problem is known as HMM Decoding problem in HMM
literature, and can be easily solved by using the well–known
Viterbi algorithm [32].

As an example, the Baum–Welch algorithm has been fed
with the sequence of computation times measured for the
previously described robotic application (see Figure 4). This
allowed us to identify a 4–states MCTM (trying to identify an
MCTM with more than 4 states resulted in duplicated states).

The Viterbi algorithm has then been used to identify the
most likely sequence of internal (hidden) states corresponding
to the sequence of observed computation times, so that it has
been possible to associate each computation time to one of
the 4 hidden states of the identified MCTM. This allowed
us to partition the sequence of computation times in 4 sub–
sequences, to perform a numerical test for independence [33]
on such sub–sequences, and to compute the autocorrelation
for each one of them.

The results are presented in Table I and in Figure 6, and



Table I
RESULTS OF THE NUMERICAL INDEPENDENCE TESTS FOR THE 4

SUB–SEQUENCES ESTIMATED BY THE BAUM–WELCH ALGORITHM. THE
P–VALUE GREATER THAN 0.01 ALLOWS US TO ACCEPT THE

INDEPENDENCE ASSUMPTION.

State z–statistic p–value
1 -0.6935 0.2440
2 -2.2925 0.0109
3 -1.0248 0.1527
4 -0.9297 0.1763

show that the computation times in each state are independent;
hence, they can be correctly described by the identified output
probability distributions, and the MCTM properly models the
sequence of measured computation times.

V. MODEL ANALYSIS

In this section, we show the analysis of the timing evolution
of a periodic task, with period T and computation time
described by an MCTM, when it is scheduled through a CPU
reservation with parameters (Qs, T s). For simplicity, we will
assume that the server period T s is chosen as an integer sub–
multiple of the activation period T : T = nT s, with n ∈ N.
Other choices are possible but make little practical sense.

First, we will show how the dynamic evolution of a CBS
scheduler serving a task with computation time described by
an MCTM can be described by a Markov chain. Then, we
will discuss how it is possible to, efficiently, compute the
steady state distribution of the probability of the states of the
Markov chain. Finally, we will discuss how to compute the
distribution of the response time of the task using the steady
state distribution of the states of the Markov chain.

a) Dynamic Model: Let dsj denote the latest scheduling
deadline used for job Jj , and introduce the symbol δj = dsj −
rj . The latest scheduling deadline dsj is an upper bound for
the finishing time of the job. If Equation (1) is respected, then
fj ≤ dsj , i.e., a job always finishes before its latest deadline.
Hence, δj is an upper bound for the job response time.

The quantity δj takes on values in a discrete set: the
integer multiples of T s and the probability β = Pr {fj ≤ dj}
of meeting a deadline dj = rj + D is lower bounded by
Pr {δj ≤ D}: β ≥ Pr {δj ≤ D}.

The evolution of δj is described as follows [7]:

v1 = c1

vj = max{0, vj−1 − nQs}+ cj

δj =

⌈
vj
Qs

⌉
T s

(2)

In the following we will use the function [a]
+

= max{0, a}.
It is useful to observe that the workload vj is not directly
measurable, as it can only be evaluated at the end of the job
through the measurement of δj . Introduce the symbol cmin

mj
and

cmax
mj

, to denote the minimum and maximum computation time
for mode mj : cmin

mj
= min

{
c s.t. Cmj (c) 6= 0

}
and cmax

mj
=

max
{
c s.t. Cmj (c) 6= 0

}
, with mj ∈M.

Let cmin and cmax be the minimum and the maximum com-
putation time for all the different modes: cmin = min

{
cmin
mj

}
and cmax = max

{
cmax
mj

}
. Since the computation time range in

the bounded set
{
cmin, . . . , cmax

}
regardless of the mode of

the MCTM, the value of vj will be lower bounded by cmin.
For i.i.d. computation times, the state of the system is

entirely captured by vj , and the system in Equation (2) is
a Markov chain, which can be studied using the standard
techniques for Probabilistic Guarantees [20].

For the case of MCTM computation times, we have to
extend the state to consider the mode. Therefore, for the jth

Job, the state of the system is captured by the pair (mj , vj).
Let us define the eventsMg(j) = {mj = g}, meaning that the
system is in mode g at job j, and Vh(j) =

{
vj = cmin + h

}
,

meaning that the workload is equal to cmin + h at job j, with
g ∈ M and h ∈ [0, . . . , ∞[. Hence, the state of an MCTM
can be formally defined as follows.

Definition 2: The state of an MCTM, Sg, h(j), is defined as
the intersection of the previously defined events: Sg, h(j) =
Mg(j) ∧ Vh(j). In plain words, the event Sg, h(j) can be
expressed as “the state (mj , vj) has the value (g, cmin +h)”.

For a generic couple of events A and B, by the defini-
tion of conditional probability, we have that Pr {A ∧B} =
Pr {B}Pr {A |B }. The same property can be generalised
if all probabilities are conditioned to a third event C:
Pr {A ∧B |C } = Pr {B |C }Pr {A |B ∧ C }. Indeed, by the
definition of conditional probability, for the right hand side,
we can write:

Pr {B |C }Pr {A |B ∧ C }

=
Pr {B ∧ C}
Pr {C}

Pr {A ∧B ∧ C}
Pr {B ∧ C}

=
Pr {A ∧B ∧ C}

Pr {C}
= Pr {A ∧B |C } ,

(3)

where the last step descends from the very definition of
conditional probability.

Based on Equation (3) and on Definition 2, we can write:

Pr {Sg′, h′(j) |Sg, h(j − 1)}
= Pr {Mg′(j) ∧ Vh′(j) |Sg, h(j − 1)}
= Pr {Mg′(j) |Sg, h(j − 1)} ·

Pr {Vh′(j) |Sg, h(j − 1) ∧Mg′(j)} .

(4)

As a direct application of Definition 2, the first term of
Equation (4) can be written as:

Pr {Mg′(j) |Sg, h(j − 1)}
= Pr {Mg′(j) |Mg(j − 1) ∧ Vh(j − 1)} .

(5)

In view of Assumption 1, the mode change is independent of
the computation time of the previous job. Hence, it is possible
to write Equation (5) as:



Pr {Mg′(j) |Sg, h(j − 1)}
= Pr {Mg′(j) |Mg(j − 1)}
= Pr {mj = g′ |mj−1 = g }
= pg, g′ .

(6)

The second term of Equation (4) can be written as:

Pr {Vh′(j) |Sg, h(j − 1) ∧Mg′(j)}
= Pr {Vh′(j) |Mg(j − 1) ∧ Vh(j − 1) ∧Mg′(j)}
= Pr

{
vj = cmin + h′|

mj = g′ ∧mj−1 = g ∧ vj−1 = cmin + h
}
.

(7)

In view of Assumption 1, the process modelling the sequence
cj of the computation time depends neither on vj nor on mj−1,
but solely on mj . Thereby, taking into account Equation (2),
it is possible to write Equation (7) as:

Pr
{
vj = cmin + h′

∣∣mj = g′ ∧mj−1 = g ∧ vj−1 = cmin + h
}

= Pr
{[
cmin + h− nQs

]+
+ cj = cmin + h′ |mj = g′

}
= Pr

{
cj = cmin + h′ −

[
cmin + h− nQs

]+ |mj = g′
}

=

{
Cg′(c

min + h′) if h ≤ nQs − cmin

Cg′(h
′ − h+ nQs) otherwise .

(8)

As a result, by combining Equation (6) and Equation (8), we
have:

Pr {Sg′, h′(j) |Sg, h(j − 1)}

=

{
pg, g′Cg′(c

min + h′) if h ≤ nQs − cmin

pg, g′Cg′(h
′ − h+ nQs) otherwise .

(9)

We can now introduce a vector containing all the prob-
abilities of the different states. Let πg, h(j) be defined as
Pr {Sg, h(j)} = Pr {Mg(j) ∧ Vh(j)}. In plain words, πg, h
represents the probability that at the jth job the mode mj

be g and the workload vj be cmin + h. Introduce the vector
Πh(j) = [π1,h(j) π2,h(j) . . . πN,h(j)], which essentially
represents the probability for the workload vj to be cmin + h
for all the possible modes of the MCTM. We can stack the
vectors Πh(j) into a single probability vector Π(j) composed
by an infinite number of elements:

Π(j) = [Π0(j) Π1(j) Π2(j) . . .] . (10)

The evolution of the vector Π(j), presented in Equation (10),
can be described using the standard notation of the Markov
chains [34]: Π(j) = Π(j − 1)P .

The matrix P is called transition matrix and describes the
evolution of the probability of finding the system in each state
starting from an initial distribution. In our case, the vector
Π(j), presented in Equation (10), is made of an infinite number
of elements, and so will be the matrix P .

By applying Equation (9), we can see that the matrix has a
recursive structure. To this end, introduce the notation αg,h =
Cg(c

min + h), R = cmax − cmin, and S = nQs − cmin. The
matrix has the following block structure:

P =



P0 P1 P2 . . . PR 0 0 0 . . .
P0 P1 P2 . . . PR 0 0 0 . . .
...

...
...

...
...

...
...

... . . .
P0 P1 P2 . . . PR 0 0 0 . . .
0 P0 P1 P2 . . . PR 0 . . .
0 0 P0 P1 P2 . . . PR 0 . . .
...

...
. . . . . . . . . . . . . . . . . . . . .


,

(11)
where

Pe =


p1,1 · α1,e p1,2 · α2,e . . . p1,N · αN,e
p2,1 · α1,e p2,2 · α2,e . . . p2,N · αN,e

. . . . . . . . . . . .
pN,1 · α1,e pN,2 · α2,e . . . pN,N · αN,e

 ,
and 0 denotes a block of zero of size N ×N .

b) Computation of the steady state probability: A few
observations are in order:

1) Each row of the block matrix has at most R + 1 non–
zero blocks. Indeed, each new block is associated with a
different value of the computation time and such values
run from cmin to cmin +R = cmax;

2) As a consequence of Equation (9), starting from a value
of the workload h smaller than or equal to S, the
probability does not change with h but only depend on
the workload h′ after the transition; therefore, the first
S + 1 blocks of rows are repeated;

3) As a consequence of the same equation, starting from a
value of the workload h greater than S, the probability
is a function of the difference h′ − h; therefore, from
the block of rows S + 2 onward, each block of row is
obtained shifting the previous one to the right of one
block and padding with a block of zeros 0.

In view of these considerations, the block matrix shown in
Equation (11) has the periodic structure characteristic of a
Quasi–Birth–Death Process (QBDP). A QBDP is generally
described by the following transition matrix:

C A2 0 0 . . .
A0 A1 A2 0 . . .

0 A0 A1 A2
. . .

0 0 A0 A1
. . .

...
...

. . . . . . . . .


.

The four matrices C, A0, A1, A2 describing the QBDP can
be expressed in terms of the blocks Pe in Equation (11). In
order to see this, introduce the symbol P (pz : pZ ; qz : qZ)
to denote the submatrix obtained from P extracting the block
of rows from pz to pZ and the block of columns from qz to



qZ . For example, P (S + 1 : S + 2 ; 1 : 2) will denote the
submatrix

[
P0 P1

0 P0

]
. By setting F = max {S, R}, we have:

C = P (1 : F ; 1 : F ),

A2 = P (1 : F ; F + 1 : 2F ),

A0 = P (F + 1 : 2F ; 1 : F ), (12)
A1 = P (F + 1 : 2F ; F + 1 : 2F ).

Through easy, but tedious, computations it is possible to show
that by setting the matrices as in Equation (12), the transition
matrix indeed reduces to the QBDP structure mentioned above.
After casting our system into the QBDP framework, we can
capitalise on the rich body of results in the field. In particular,
following the same line of arguments as in [20], it is possible
to show that:

1) The system admits a steady state

Π = [Π0, Π1, . . .]

= lim
j→∞

Π(j)

= lim
j→∞

[Π0(j), Π1(j), . . .],

(13)

where limj→∞ Πh(j) = limj→∞[π1,h(j)π2,h(j) . . . πN,h(j)] .
2) The steady state distribution Π is unique and indepen-

dent from the initial distribution Π(0),
3) The computation of the steady state probability can be

done using the very efficient numeric solutions avail-
able in the literature. In particular, this paper uses the
Cyclic Reduction algorithm presented in [35] for the
numeric solution, although the Logarithmic Reduction
algorithm [36] is also suitable for this purpose.

c) Computation of the distribution of the response time:
From the steady state probability Π, it is possible to recover
the steady state distribution of the variable δj , which as we
said is an upper bound of the task’s response time. The steady
state CDF can be reconstructed using the following formula:

lim
j→∞

Pr {δj = δT s}

= lim
j→∞

Pr

{⌈
vj
Qs

⌉
= δ

}
= lim
j→∞

Pr

{
δ − 1 <

vj
Qs
≤ δ
}

= lim
j→∞

Pr {(δ − 1)Qs < vj ≤ δQs}

=

δQs∑
h=(δ−1)Qs+1

lim
j→∞

Pr {vj = h} ,

(14)

where:

lim
j→∞

Pr {vj = h}

=

{
0 if h < cmin

limj→∞
∑N
g=1 Pr {Vh−cmin(j) ∧Mg(j)} otherwise .

We can finally observe that
limj→∞

∑N
g=1 Pr

{
Vh−cmin (j) ∧Mg(j)

}
=
∑N

g=1 limj→∞ πg,h(j).
As discussed in Equation (13), each element∑N
g=1 limj→∞ πg,h(j) of the sum can be extracted from the

steady state distribution Π.
By using the steady state distribution of the process

δj , presented in Equation (14), it is possible to guar-
antee probabilistic deadlines. Indeed, a probabilistic dead-
line (D, β) is guaranteed if limj→∞Pr {δj ≤ D} =∑D/T s

h=1 limδ→∞Pr {δj = δT s} ≥ β, where we made the
natural assumption that D is chosen as a multiple of T s.

VI. EXPERIMENTS

In order to show the practical applicability of the presented
approach, we have evaluated it on the real robotic application
presented in Section III-A, where a robotic vision programme
is used to identify the boundaries of the lane, estimating the
position and orientation of a mobile robot while moving in a
predefined track.

A. Experimental setup

The experimental setup consisted of a black ribbon placed
on the floor creating a track of 37 meters long. The linear
velocity of the robot was constant and set to 0.6 m/s. The
robot executed 20 laps in the track, allowing us to capture,
with a frame rate of 30 fps, a video stream containing the
ribbon. This data set roughly consisted of 18400 frames.

Moreover, in order to test the vision algorithm under dif-
ferent conditions, there were created 2 distinct tracks with
different floor characteristics, as presented in Figure 5.

The first track was considered a “clean” one given that the
lane detection algorithm was able to remove all the undesired
elements from the image. On the other hand, the second track
was considered a “noisy” track because most of the undesired
elements remain in the image after the preprocessing step. As
expected, the computation times of the different tracks differ
considerably.

As a result, the experiments were performed on 2 sets (1
“clean” and 1 “noisy”) of 18400 frames each. These sets were
used as input for several off–line runs of the task executing
the vision algorithm.

All these runs of the lane detection algorithm were carried
out using a WandBoard running Ubuntu. The version of the
Kernel used (4.8.1) implements the CBS algorithm (under the
name of SCHED DEADLINE [23] policy) alongside the stan-
dard POSIX real–time fixed priority policies (SCHED FIFO
and SCHED RR).

B. Experimental results

In order to collect statistics of the computation time as-
sociated with each data set, the task running the vision
algorithm, scheduled with the maximum real–time priority
(99 for SCHED FIFO), was run 100 times for each data set.
In this way, each run will consist of 18400 jobs, with its
corresponding computation time, each one representing the
processing of one frame from the data set.
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Figure 7. Cumulative distribution for the 4 different modes of the “clean”
track identified by the Baum–Welch algorithm.

This group of 100 runs was divided into:

• Training set, which was analysed using the HMM identi-
fication techniques presented in Section IV-A to identify
if a MCTM exists that fits the data, and

• Testing set, which was used to validate the results of the
HMM training phase.

As mentioned in Section IV-A, the Baum–Welch algorithm
was fed with different sequences of measured computation
times taken from the training set. This process has been re-
peated multiple times, for different numbers of modes (ranging
from 1 to 6) and using different numbers of measures for
training the HMM. The algorithm identified 4 different modes
for each track, which present independence in the computation
times associated to them. Figure 7 presents the cumulative
distribution function for each mode of the “clean” track.

In a second group of 50 runs, we have replicated a real–life
condition. The vision algorithm was, in this case, executed in
a periodic task, receiving as input the whole date set (18400
frames per track), and processing one frame every T = 100 ms.
The task was scheduled using SCHED DEADLINE, with
server period T s = 25 ms and budget Qs = 4 ms for the
“clean” track.

The measured probability of respecting a deadline, ex-
pressed as the ratio between the number of jobs that finished
before the deadline over the total number of jobs, was averaged
through the 50 runs and compared with the one estimated by
the MCTM model and the simplified i.i.d model presented
in [20]. Figure 8 presents such a comparison, and shows
two important things: first of all, the results obtained with
MCTM are pretty similar to the ones obtained by executing
a real application with SCHED DEADLINE. Then, the i.i.d.
approximation results in an overestimation in the probability
of respecting a deadline (around 5% for the task period and
reaches 10% for 200 ms). Such an optimistic analysis can
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Figure 8. Probability of respecting the deadline, for the different methods,
with a bandwidth fixed to 16% in the “clean” track.
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Figure 9. Probability of respecting the deadline, for the different methods,
with a bandwidth fixed to 70% in the “noisy” track.

be dangerous when designing a real–time system. As shown,
MCTM allows to avoid this error.

In the case of the “noisy” track, the scheduling parameters
were T = 200 ms, with server period T s = 50 ms and budget
Qs = 35 ms. Also in this case, as presented in Figure 9,
we observe a good match between the proposed technique
(labelled MCTM) and the experimental result. In this case,
the error introduced by making the i.i.d. approximation is
evidently much larger (around 10% for the task period, but
it reaches 25% for a deadline equal to 400 ms).

Additionally, Figure 10 shows the accuracy of the MCTM
approach when the relative deadline is fixed to the task period
and different options of bandwidths are explored for the case of
the “clean” track. Once again, the proposed approach shows
a very good performance when compared with the real–life
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Figure 11. Distribution of the mean probability of respecting a deadline equal
to the task period (200 ms) for different values of the bandwidth assigned to
the task in the case of the “noisy” track.

application. Similar results were obtained for the “noisy” track,
as shown in Figure 11.

The close match between the analysis and the experimental
data is apparently the result of a good correspondence between
the process expressing the computation time and the MCTM.
For other applications, the MCTM fitting could not be so
good or require a number of modes that is beyond the reach
of our analysis tool. This evaluation is reserved for future
investigations.

VII. CONCLUSIONS

In this paper, we have studied the best way to provide
temporal execution guarantees to a large class of robotic
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Figure 12. Computation times obtained from a RRT* motion planner.

applications using randomised methods. The wide variation in
the computation time and the known resilience to occasional
deadline misses discourage the use of standard hard real–time
techniques. On the other hand, probabilistic guarantees have
been developed for i.i.d. processes, while robotic applications
exhibit a strong correlation structure depending on the condi-
tions in which the robot operates. In such cases, a Markovian
model that we have defined MCTM is a better fit for the
process of the computation time.

We have shown a technique for the extraction of the param-
eters of the MCTM from a limited number of observation and
shown how to adapt the techniques developed for probabilistic
guarantees of resource reservations to MCTM computation
time. The adherence between theory and experiments is very
good.

In our future work, we plan to extend the analysis to
other type of application, including visual tracking of moving
objects and RRT* motion planning. Our preliminary data
collected on the latter application show that this is indeed a
promising work direction.

Consider the execution trace collected with a RRT* motion
planner shown in Figure 12. We show the computation time for
several executions collected from the planner in three different
conditions corresponding to a different density of obstacles in
the environment. We can see that the computation time:

1) Fluctuates (as is typical for randomised methods),
2) Depends on the complexity of the input data set, and
3) For a given operating condition, it is uncorrelated.

Under these premises, the computation time can be described
by an MCTM when the robot is on the move.

These applications have the potential to present a larger
variability in the computation time, leading to a considerable
increment in the number of modes. The further analysis of
these aspects is also relevant and we consider them as an
interesting work direction.



A different work direction is to extend the analysis pre-
sented in the paper to the case of aperiodic tasks, which are
a frequently encounter in robotic applications. Probabilistic
guarantees for aperiodic tasks can be given in case of i.i.d.
computation and inter–arrival times, as shown in our previous
work [18]. We conjecture that the analysis presented in the
paper could be extended to the case of Markovian computation
and/or inter–arrival times following a similar approach.

Finally, since it is possible to construct online estimators for
the hidden state of an MCTM based on the Viterbi algorithm,
we believe that this possibility could be used to create adaptive
schedulers in which the bandwidth reserved to the task changes
depending on the estimated operating conditions.
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