
A Markovian model for the computation time of
real–time applications

Luca Abeni
DISI - University of Trento

Via Sommarive 5, 38123, Trento, Italy
Email: luca.abeni@unitn.it

Daniele Fontanelli
DII - University of Trento

Via Sommarive 9, 38123, Trento, Italy
Email: daniele.fontanelli@unitn.it

Luigi Palopoli, Bernardo Villalba Frı́as
DISI - University of Trento

Via Sommarive 5, 38123, Trento, Italy
Email: {luigi.palopoli,br.villalbafrias}@unitn.it

Abstract—Many real–time applications consist of a cyclic
execution of computation activities (jobs) with stochastic com-
putation time. In order to identify the probability that such
applications will meet their deadlines, it is crucial to have
a model for the random process describing the computation
time. In many interesting applications, a Markovian model, in
which the system stochastically switches within a discrete set
of operating conditions (modes), is apparently a good fit for
the actual behaviour of the process. In this paper, we discuss
procedures and methods for the collection of samples of the
computation time and for the identification of the underlying
models based on the theory of hidden Markov models (HMM).

I. INTRODUCTION

In many computing applications, software components are
called to a tight interaction with the external environment.
In these cases, it is imperative that the results of each
computation are delivered with the correct timing (e.g., in
order to generate an appropriate reaction to an event or to
generate the signals that control the evolution of a system).
Such software applications are commonly called real–time
applications. Examples can be found in many measurement
applications, such as smart grid state estimation [1], smart
meters [2], signal processing [3], energy management units [4],
wireless measurement applications [5], power substations [6],
mechanical measures [7], target tracking [8] and visually
servoed measurement instruments [9], [10].

A common misconception on real–time applications is that
they are required to be efficient and “fast”. This is certainly
desirable, but is not really the defining feature of a real–time
system. Much more important is predictability: every time the
application is triggered by an external event (which can simply
be the expiration of a timer), it executes a job that has to
produce a result within a specified deadline. The deadline is
said to be met if the job finishes before the deadline and is
missed otherwise.

The traditional scientific literature on real–time systems
considers that even a single deadline miss is a critical failure
for the application [11]. A system designed under this hy-
potheses is called hard real–time. Starting from the seminal
work of Liu and Layland [12], several authors have produced
analysis techniques to guarantee that all the jobs generated by

This paper has received funding from the European Union’s Horizon 2020
Research and Innovation Programme - Societal Challenge 1 (DG CON-
NECT/H) under grant agreement n◦ 643644 “ACANTO - A CyberphysicAl
social NeTwOrk using robot friends”.

the applications, executing on the same processor, meet their
deadlines. A very popular technique due to Pandya et al. [13]
is based on the computation of the worst–case response time,
i.e., of the maximum possible interval between the time an
application is triggered and the time its result is delivered.
Any analysis of this type has to account for the amount of
computation time requested by an application in the worst case,
for the frequency of the job activation requests and for the
delays that the execution could suffer because of the presence
of other applications in the system competing for the processor
(scheduling delay). The scheduling delay is relatively easy
to account for if the scheduler uses either static or dynamic
priorities [12]. Much more critical is the knowledge of the
worst–case execution time (WCET). This parameter is very
difficult to measure or even to estimate when the application
has strong data dependencies and/or when the architecture
used for the execution is pipelined or uses a cache memory
hierarchy. In such cases, the spread between average case
and worst case could be large and the latter could be very
improbable, hence escape the observation even from a large
collection of execution traces.

To deal with this problem, different authors advocate the
use of the so–called probabilistic WCET (pWCET) [14]. The
idea is that for each execution, a task experiences a WCET,
which changes depending on the input data set and on random
effects in the system hardware. The pWCET can be obtained
from measurements using statistical techniques derived from
the Extreme Value Theory (EVT) [15] and allows the designer
to provide hard real–time guarantees through standard tech-
nique, as those in [13], and associate the result with a level of
confidence.

The use of the pWCET is grounded in the traditional vision
that even a single deadline violation is a critical failure, and it
simply estimates the probability that such a failure will actually
occur. This is very useful for many industrial cases but is
of little help when the application is resilient to occasional
deadline misses. Such applications are called soft real–time
and can be found in several areas ranging from multimedia
(e.g., streaming or surveillance) to visual based robot con-
trol [16], [17]. For a soft real–time application, designers are
interested in the Quality of Service (QoS) (e.g., measured by
the frequency of deadline misses) delivered during every single
run, rather than in the probability that for all possible runs a
deadline will be missed. The notion of probabilistic deadlines
has been proposed to accommodate for this requirement. While
a “standard” deterministic deadline must always be respected,

a probabilistic deadline can be missed with a given probability.
A probabilistic real–time guarantee states that the deadline
will be respected with a probability at least equal to the one
specified in the probabilistic deadline [18]. A probabilistic
guarantee of this kind requires a system analysis and solution
techniques based on queuing and stochastic systems theory
and the recent literature on real–time systems offers several
examples of techniques developed for this purpose [19], [20],
[21].

A common assumption of these methods is that the stochas-
tic process describing the computation time is independent
and identically distributed (i.i.d.). An i.i.d. process makes the
system’s analysis tractable [22] and can be considered as a
good approximation in many cases of interest [20]. However,
there are also practical cases in which ignoring the correlation
structure could lead to significant errors in the analysis. A
possible situation is when the process behaves as a Markov
Modulated Process (MMP). Essentially, the system switches
between different operating modes through a Markov chain,
and in each of these conditions the computation time is an
i.i.d. process. We call this model Markov Computation Time
Model (MCTM). In our previous work [23], we have shown
that there are methods to extend the analysis developed for
i.i.d. computation time to the case of MCTM. These methods
require a model of the MCTM expressed in terms of a Markov
chain, modelling the transitions between the different operating
modes and the distribution of computation time in each mode.
In this paper we focus on the problem of how to identify such a
model from a long enough time series of the computation time.
Among the different problems, the following are prominent:
1. how to measure the computation time in an efficient and
accurate way, 2. how to estimate the number of operating
modes (i.e., of states in the Markov chain) from a raw trace
of execution times, 3. how many samples are necessary. In the
paper, we will try to address these issues borrowing methods
from the theory of the hidden Markov models (HMM).

The paper is organised as follows. In Section II, we discuss
our measurement system exposing the most important prob-
lems related to measuring the computation time. In Section III,
we describe our procedure for the identification of the MCTM.
In Section IV, we show our results, obtained both from a
synthetic data set and from a real robotic application. Finally,
Section V discusses the obtained results and describes the
possible future developments.

II. MEASUREMENT TECHNIQUE AND PLATFORM

A real–time application is usually structured as a concur-
rent task τ , which consists of a stream of jobs denoted as Ji,
with i ∈ N. A pseudo–code example of a real–time task of
this kind is shown in the following excerpt:

do{
a i = wait for next activation();
job body();
< f i = get time(); >

} while(true);

The first pseudo–call (wait_for_next_activation())
blocks the task until the activation event takes place. This event
can be the expiration of a timer or an external event of different
kind. When the function returns, the task is unblocked and the

24 3612

τ

τ

0 Time
units

Time
units

Job activation Kernel latency Job preemptionJob execution

Legend

siai fi

Figure 1. Example of the different delays a task con suffer. On the top
image, a standard Linux Operating System is affected by the kernel latency
and by the preemption of higher priority tasks. On the bottom, a Real–Time
Operating System, where the real–time tasks do not suffer any preemption.

i–th job Ji can start. This happens at an absolute time ai
(said job activation time) that in our basic scheme is simply
returned by the function. After job Ji starts, it needs to execute
for a total time ci, which changes depending on the input
received and on architecture effects (e.g., cache, pipeline). The
job computation (job_body()) finishes at a time fi and the
task is then blocked once again waiting for the next activation.
The difference Ri = fi − ai is called response time.

If one inserts a call for time measurement at the end
of the function (which we denote by get_time(), within
brackets in the example), it is possible to measure Ri and
record it. However, this strategy does not necessarily produce
an accurate measurement of the ci. The first problem is that
not all operating systems have accurate system calls to measure
time. The second problem is that the execution of the Operating
System calls to block and unblock the task and to do any
kind of I/O operation usually have a latency, which in some
cases could be time varying. Moreover, even the function
used to measure time has a latency and then affects the time
measure accuracy. Finally, if the task shares the CPU with
other tasks, its execution could be “preempted” and the task
could accumulate a “scheduling delay” that changes from job
to job depending on the other tasks present in the system. All
these effects are exemplified in the top half of Figure 1, where
we see three different jobs being delayed by a different amount
of time depending on the situation.

In order to address these issues, we obviously need a real–
time operating system. A reliable solution can be based on the
use of the Linux operating system. The reasons for this choice
are the following.

1. As most POSIX compliant system, Linux features a standard
function for time measurement (gettimeofday), which pro-
vides measurement with microsecond granularity. The recent
version of Linux contain a facility (called high resolution
timers), which offer a function call (clock_gettime) with
a nanosecond resolution; the execution latency of the call is
usually much greater than a nanosecond, but this solution
reportedly enables measurements with sub–microsecond pre-
cision.

2. The Linux kernel can be equipped with a technology (called
RT–preempt1) that reduces both the latency of the system calls
and their variability. For the experiments reported in this paper,

1https://rt.wiki.kernel.org/index.php/RT PREEMPT HOWTO

we used a WandBoard2 running Ubuntu with the 4.8.1 Linux
kernel and equipped with the RT–preempt patch. On this type
of machine, the maximum latency of the system calls reported
by a specialised website3 is in the order of 50 µs, which is
two order of magnitude below the minimum computation time
that we measured.

3. The Linux kernel allows one to assign a fixed priority to the
tasks, through the SCHED_RR or the SCHED_FIFO policy. If
the task is assigned priority 99, which is the highest priority
in the system, there is a theoretical guarantee that it will not
undergo any scheduling delay. This is exactly what we did for
the data collected in this paper. To be fair, the real guarantee
that the task obtains in this way is that it will not suffer any
preemption from another task, as shown in the bottom half
of Figure 1. However, a task could still be preempted by the
execution of interrupt handlers (which for standard operating
systems are unaffected by the scheduling choices). Once again
the use of a real–time kernel (e.g., Linux patched with the RT–
preempt) can solve the problem, because interrupt handlers are
executed for the most part within Kernel threads, which have
an assigned priority and are not allowed to preempt tasks with
a higher priority.

As discussed in the next sections, the execution traces will
be analysed using HMM identification techniques to identify
if a MCTM exists that fits the data. Our application scenario is
not the typical one for HMM identification. Indeed, more often
than not, HMM identification is carried out on “short” time se-
ries with a small number of possible measurable symbols [24],
[25]. In our case, the number of possible observations equates
the number of possible computation time, which is generally a
large number (in some applications the possible values of the
computation time could span from fractions of millisecond to
hundreds of milliseconds, in both cases quite larger than the
latencies induced by the real–time kernel), and hence facilitate
the convergence of numeric integration methods [26]. On the
other hand, collecting a large number of samples is relatively
easier for the computation time than for other processes. In
this unusual application context for HMM identification, it
is imperative to understand the number of samples required
to come up with a reasonably stable estimate of the HMM
parameters.

III. HIDDEN MARKOV MODELS IDENTIFICATION

Due to their variability, the execution times cj of a real–
time task τ can be described as a stochastic process; unfor-
tunately, the random variables composing the process are not
independent (for example, the execution time of job Jj might
depend on the execution time of job Jj−1). If the execution
times process was composed by independent variables, it
would have been possible to describe the execution time cj of
job Jj with a probability mass function Uj(c) = Pr {cj = c};
if all these random variables were identically distributed, the
execution times of the tasks could have been described using a
single probability mass function U(c). But unfortunately, there
are many cases in which this is not a good model for the task’s
execution times.

2www.wandboard.org
3https://www.osadl.org/Hardware-overview.qa-farm-hardware.0.html#

ARM TI

A more general formulation is instead to consider the
stochastic process of the execution times as non–stationary.
A tractable model can be derived if the process is assumed
to behave as a Markov Modulated Process (MMP), which
we define Markov Computation Time Model (MCTM). This
choice comes from the nature of the stochastic process at
hand: data–driven application execution times depend on the
actual input data quality, which is very often consistent along
consecutive executions. With this assumption, we show how a
MCTM is effectively modelled by means of a hidden Markov
model, or HMM. In this case, we assume that the execution
times depend on an internal state sj of the task that can assume
a finite number of values, i.e. sj ∈ S = {S0, . . . , Sn−1}.
If the task is in state Si, then the execution time of the
current job is distributed according to a probability mass
function Ui(c) = Pr {cj = c |sj = Si }, i.e., there is a different
execution times probability distribution for each state. Of
course, the internal state sj cannot be directly measured and
it is assumed to be modelled as a Markov chain, i.e. the
probability to be in state Sk at time j only depends on the
value of the state at time j − 1 [26].

In our HMM with n different states S, the transition
probabilities ph, k = Pr {sj = Sk |sj−1 = Sh } describe the
stochastic transitions between the states. As is customary in
the Markov chain literature [27], by denoting πj ∈ Rn, the
row vector of probabilities of being in each state, we have
immediately that

πj+1 = πjM,

where M = (ph, k) is the transition probability
matrix. The output probability distributions set
U = {U0(c), U1(c), . . . , Un−1(c)} models all the probability
mass functions associated to each state. Therefore, the
problem we intended to solve reads as: Given a sequence
of execution times measured as described in Section II, find
the HMM parameters (number of states n, state transition
probabilities M , and output probabilities U) that better
describe the process of the execution times.

In the literature, this is known as the “HMM Learning”
problem. Assuming the knowledge of the number of internal
sates n, this problem can be addressed by using some well–
known techniques such as the Baum–Welch algorithm [28].
The Baum–Welch algorithm is a form of Expectation Max-
imisation algorithm maximising the likelihood function L,
which is defined as the probability for the identified HMM
θ , (M, U) to generate a sequence of measured output values
c0, . . . , cT

L = Pr {c0, . . . , cT |θ} .

The algorithm estimates M and U starting from two initial
guesses that are iteratively refined. In each step of the iteration,
the new estimations for M and U are computed based on the
probability ξj(h, k) for the HMM to be in state Sh at job Jj
and in state Sk at job Jj+1, given the sequence of observed
computation times c0, . . . , cj+1

ξj(h, k) = Pr {sj = Sh ∧ sj+1 = Sk |c0, . . . , cj+1 } .

Based on this, a new estimation of M can be computed as

ph, k =

∑
j ξj(h, k)∑

j

∑
i ξj(h, i)

.

Although this algorithm works perfectly from the theoret-
ical point of view, it can be subjected to numerical stability
problems (underflow) when the number of observed compu-
tation times is too high, as noticed in [29]. This happens
because ξj(h, k) is computed based on the so called forward
probabilities αj(h), i.e. probability for the HMM to be in state
Sh at job Jj

αj(h) = Pr {sj = Sh ∧ c0, . . . , cj} ,

and backward probabilities βj(h), i.e. probability to see com-
putation times cj+1, . . . , cT given that the task is in state Sh

at job Jj

βj(h) = Pr {cj+1, . . . , cT |sj = Sh } .

The forward probabilities αj(h) can be computed using an
inductive expression αj(h) =

∑
k αj−1(k)pk, hUh(cj), and

the backward probabilities can be computed as βj(h) =∑
k βj+1(k)ph, kUk(cj+1). Since we have a lot of measured

execution times, j can become large, and, hence, αj(·)/βj(·)
are multiplied a large number of times for probabilities that
are less than 1, thus becoming 0 due to underflow errors.
This problem can be solved by modifying the Baum–Welch
algorithm to use conditional probabilities instead of joint
probabilities, as shown in [29].

Given a sequence of observed execution times, the revised
Baum–Welch algorithm is able to estimate the transition matrix
M and the output probability distributions U if the number n
of distinct internal states sj is available. In other words, the
dimension of M and the number of different PMFs U should
be known upfront. Hence, the problem is how to estimate such
a value. In order to correctly dimension n, we made use of a
cross–validation approach for the likelihood [30]. Therefore,
to estimate the number of states n we adopted a gradient–like
approach:

1) Set n = 1, then execute the EM procedure and
evaluate the cross–validated likelihood L;

2) Set L? = L;
3) Set n = n + 1, then execute the EM procedure and

evaluate the cross–validated likelihood L;
4) If L ≤ L?, go to step 2);
5) The optimal number of states is n − 1, with cross–

validated likelihood L?.

If has to be noted that this algorithm is based on the
experimental evidence, also reported in Section IV, that in-
creasing the number of states more than needed also increases
the cross–validated likelihood. Although only a conjecture
at this point, which is grounded to the theoretical results
on gradient–based methods [26] and will be the subject of
future work, this approach proves to be efficient in all the
test cases adopted. Another remarkable feature is that the
cross–validated likelihood can also be used to establish the
maximum number of execution time measures to be used in
the identification, again using a gradient–like algorithm. Even
though more data means higher estimation accuracy, we found
out that the number of measures to be analysed can be limited
according to the observed improvement of the cross–validated
likelihood gradient, as discussed in the next section.

IV. RESULTS

The validation of the proposed method is based on both
synthetic data and a real robotic application. First of all, the
effectiveness of the cross–validation method has been tested
using some synthetic data generated in simulation from a
known HMM, with the output probability distributions rep-
resented in Table I and the following transition probability
matrix:

M =

[
0.80 0.20 0.00
0.00 0.70 0.30
0.15 0.25 0.60

]
.

The samples synthetically generated from this HMM have been
divided in 20 partitions, using one of them for identifying
the HMM and the remaining 19 for computing the cross–
validated likelihood. This has been repeated multiple times,
for different numbers of states (ranging from 1 to 6) and using
different numbers of measures for training the HMM. The ratio
between the cross–validated likelihoods and the one obtained
for 30000 measures and n = 3 states are reported in percentage
in Table II as a function of the number of measures versus
the number of states. From the table, two main outcomes can
be identified: a) the HMM with n = 3 states is consistently
the one having the largest cross–validated likelihood, and this
confirms that the cross–validated likelihood is a good indicator
for selecting the “best” HMM parameters; b) using more
than 5000 measures the improvements in the cross–validated
likelihood are negligible (less than one thousandth), hence
5000 measures are sufficient to correctly identify the HMM
parameters. In such a case, the transition probability matrix
M̂ estimated with 5000 measures is

M̂ =

[
0.805 0.195 0.000
0.000 0.693 0.307
0.160 0.252 0.588

]
,

which has an error that is less than 1%. The output probability
distributions U (not reported here for the sake of brevity)
also looks pretty similar to the original ones. Notice that the
algorithm has been also tested, but not reported for space
limits, on standard i.i.d. processes, ending up with an HMM
with n = 1 states, as expected.

For what concerns the experiments, the proposed approach
has been used to model the execution times of a robotic
application in which computer vision algorithms are used to
identify a ribbon placed on the floor, from images grabbed
by a camera placed on–board a wheeled mobile robot. From
those measures, both the position and orientation of the robot
are estimated on–line. The lane detection algorithm executes
on a WandBoard running Ubuntu with the 4.8.1 Linux kernel,
and the execution times of the various jobs (each job is in
charge of processing a video frame) have been measured as
described in Section II. An increasing number of execution
time measurements (ranging from 500 to 50000) has then been
used to learn the parameters of an HMM with a number of
states ranging from 1 to 8. Again, the percentage of the ratio
of the cross–validated likelihoods with the one obtained for
50000 measures and n = 6 states are reported in percentage
in Table III. From these data it is possible to see on a real
experiment how the gradient–like algorithm is well funded,
since increasing the number of states up to 6 greatly increases
the cross–validated likelihood, while increasing further the

Table I. OUTPUT PROBABILITY DISTRIBUTIONS FOR THE HMM OF THE FIRST EXPERIMENT.

S Computation time c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S0 0.004 0.159 0.787 0.05 - - - - - - - - - - - -
S1 - - 0.050 0.232 0.198 0.134 0.157 0.101 0.062 0.034 0.026 0.006 - - - -
S2 - - - - - - 0.006 0.048 0.072 0.109 0.132 0.147 0.131 0.159 0.125 0.071

Table II. RATIO BETWEEN THE CROSS–VALIDATED LIKELIHOODS AND
THE ONE OBTAINED FOR 30000 MEASURES AND n = 3 STATES, REPORTED

IN PERCENTAGE. DIFFERENT NUMBERS OF STATES n AND MEASURES
USED TO IDENTIFY THE HMM ARE DEPICTED. DATA ARE COLLECTED

FROM SYNTHETIC DATA.

n
1 2 3 4 5 6

500 12.04 4.69 2.52 5.09 6.18 7.13
1000 11.52 3.61 1.06 2.12 2.61 4.18
2000 11.32 3.26 0.34 0.62 1.11 1.60
3000 11.37 3.28 0.30 0.40 0.81 1.10
4000 11.32 3.25 0.27 0.39 0.60 0.81
5000 11.31 3.15 0.16 0.23 0.39 0.55
7500 11.28 3.18 0.18 0.20 0.33 0.46
10000 11.22 3.09 0.12 0.13 0.20 0.25
15000 11.20 3.08 0.03 0.04 0.08 0.15
20000 11.14 2.98 0.03 0.04 0.06 0.07
25000 11.20 2.96 0.02 0.03 0.05 0.08
30000 11.19 2.95 0 0.02 0.06 0.07

Table III. RATIO BETWEEN THE CROSS–VALIDATED LIKELIHOODS AND
THE ONE OBTAINED FOR 50000 MEASURES AND n = 6 STATES, REPORTED

IN PERCENTAGE. DIFFERENT NUMBERS OF STATES n AND MEASURES
USED TO IDENTIFY THE HMM ARE DEPICTED. DATA ARE COLLECTED

FROM THE ROBOTIC EXPERIMENT.

n
1 2 3 4 5 6 7 8

500 23.90 23.08 30.59 34.73 39.75 52.24 45.25 49.72
1000 17.30 12.12 14.09 14.75 22.71 16.84 25.57 24.59
2000 10.53 7.31 5.74 6.45 7.90 8.44 9.80 11.36
3000 10.03 5.12 3.87 3.72 4.83 5.23 6.75 7.16
4000 9.17 4.44 2.94 3.01 3.19 4.11 4.79 5.53
5000 8.94 4.04 2.46 2.26 3.05 3.34 4.01 4.32
7500 8.77 3.78 2.05 1.79 1.74 2.07 2.68 2.77
10000 8.55 3.46 1.72 1.31 1.20 1.39 2.09 2.07
12500 8.50 3.35 1.65 1.15 0.97 0.98 1.21 1.54
15000 8.40 3.23 1.56 0.99 0.89 0.80 1.07 1.23
20000 8.31 3.09 1.34 0.78 0.60 0.63 0.81 0.82
30000 8.20 2.93 1.17 0.57 0.33 0.27 0.28 0.36
40000 8.13 2.89 1.04 0.44 0.18 0.09 0.10 0.19
50000 8.07 2.82 1.05 0.35 0.11 0 0.01 0.02

number of states does not seem to have too many advantages.
Moreover, using more than 15000 results in a negligible
improvement in terms of likelihood. Of course, we cannot
compare the transition probability matrix M and U since the
actual value is unknown in this case. We decided next to model
the execution times of this robotic application using a 6–states
HMM trained with 15000 measures of the execution time.

To validate the model, we replicated the experiments again
and checked if the real–time performance predicted using the
derived HMM matched the ones of the real application. The
vision algorithm was, in this case, executed in a periodic task
processing a frame every 200 ms. The task was scheduled
using the SCHED DEADLINE [31] policy provided by the
Linux kernel, and reserving a fraction of the CPU idle time to
this task. The experimental probability of respecting a relative
deadline, averaged through 20 executions, was compared with
the one estimated using the HMM. Additional comparisons
have been carried out with an i.i.d. model, derived with the
technique presented in [20]. The comparison is reported in
Figure 2 and shows that the probability of missing a deadline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

P
ro

b
a
b

ili
ty

Probabilistic Deadline [ms]

IID Approximation
Linux 4.8.1 with SCHED_DEADLINE

6 States HMM

Figure 2. Probability of respecting the deadline for the robotic experiments.

obtained with the synthesised HMM are very tight to the
ones measured experimentally. Indeed, a maximum error of
less than one hundredth is measured for the proposed HMM
model, while the i.i.d. approximation yields an error that is one
order of magnitude larger. Moreover, it is evident how in this
case the i.i.d. approximation results in an overestimation of the
probability to respecting the deadline, and such an optimistic
analysis can be dangerous when designing a real–time system.

V. CONCLUSIONS

In real–time applications with probabilistic guarantees it
is important to know the stochastic process describing the
computation times. A frequent choice is to ignore the cor-
relation structure and to consider the process as i.i.d., which
we have shown with experimental data that may fall short of
producing decent results in some applications. In this paper,
we have considered a more general Markovian model, the
MCTM, which associates a different state with every working
condition of the system and generates a different distribution in
each of these cases and recovers the i.i.d. process as a special
case. We have particularly focused on an effective procedure
for identifying parameters of the MCTM, adapting ideas and
techniques from HMM estimation. The effectiveness of the
approach has been shown on both synthetic data and on a real
data set taken from a robotic application.

Future research efforts will be directed toward the com-
parison with other existing algorithms and the application of
the technique to a larger set of applications. Another direction
will be the development of an iterative algorithm which will
incrementally adapt the estimated parameters of the model as
the samples are collected. Such a method could potentially
pave the way for the development of adaptive scheduling
schemes in which the scheduling parameters are adjusted
online in order for the application to meet a target on the
probability of missing the deadline.

REFERENCES

[1] A. Angioni, J. Shang, F. Ponci, and A. Monti, “Real-Time Monitoring
of Distribution System Based on State Estimation,” IEEE Transactions
on Instrumentation and Measurement, vol. 65, no. 10, pp. 2234–2243,
Oct 2016.

[2] M. S. Reza, M. Ciobotaru, and V. G. Agelidis, “Power system frequency
estimation by using a newton-type technique for smart meters,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp.
615–624, March 2015.

[3] M. S. Reza and V. G. Agelidis, “A robust technique for single-phase
grid voltage fundamental and harmonic parameter estimation,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, no. 12, pp.
3262–3273, Dec 2015.

[4] E. Din, C. Schaef, K. Moffat, and J. Stauth, “A scalable active
battery management system with embedded real-time electrochemical
impedance spectroscopy,” IEEE Transactions on Power Electronics,
vol. PP, no. 99, pp. 1–1, 2016.

[5] L. Angrisani, L. Battaglia, and F. Delfino, “Grid-based power measure-
ment in digital wireless communication systems,” IEEE Transactions
on Instrumentation and Measurement, vol. 56, no. 5, pp. 1565–1572,
Oct 2007.

[6] Z. Zhu, S. Dai, L. Xiao, J. Zhang, Y. Teng, W. Guo, D. Zhang, Z. Gao,
N. Song, Z. Zhang, Q. Qiu, X. Xu, G. Zhang, T. Ma, and L. Lin, “A
real-time measuring and control system for the world’s first hts power
substation,” IEEE Transactions on Applied Superconductivity, vol. 23,
no. 3, June 2013.

[7] Q. Xue, H. Leung, R. Wang, B. Liu, and Y. Wu, “Continuous real-
time measurement of drilling trajectory with new state-space models of
kalman filter,” IEEE Transactions on Instrumentation and Measurement,
vol. 65, no. 1, pp. 144–154, Jan 2016.

[8] G. Plantier, N. Servagent, T. Bosch, and A. Sourice, “Real-time track-
ing of time-varying velocity using a self-mixing laser diode,” IEEE
Transactions on Instrumentation and Measurement, vol. 53, no. 1, pp.
109–115, Feb 2004.

[9] N. Marturi, B. Tamadazte, S. Dembl, and N. Piat, “Visual Servoing-
Based Depth-Estimation Technique for Manipulation Inside SEM,”
IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8,
pp. 1847–1855, Aug 2016.

[10] D. Fontanelli, F. Moro, T. Rizano, and L. Palopoli, “Vision-Based
Robust Path Reconstruction for Robot Control,” IEEE Trans. on In-
strumentation and Measurement, vol. 63, no. 4, pp. 826–837, April
2014.

[11] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Boston: Kluwer Academic Publish-
ers, 1997.

[12] C. L. Liu and J. Layland, “Scheduling alghorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, vol. 20,
no. 1, 1973.

[13] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, p. 390, 1986.

[14] G. Bernat, A. Colin, and S. Petters, “pwcet: A tool for probabilistic
worst-case execution time analysis of real-time systems,” REPORT-
UNIVERSITY OF YORK DEPARTMENT OF COMPUTER SCIENCE
YCS, 2003.

[15] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in Proceedings of the Euromicro Conference on Real-Time
Systems, Pisa, Italy, July 2012.

[16] A. Cervin, B. Lincoln, J. Eker, K. Arzen, and G. Buttazzo, “The jitter
margin and its application in the design of real-time control systems,”
in Proceedings of the IEEE International Conference on Real-Time and
Embedded Computing Systems and Applications. Gothenburg, Sweden,
2004.

[17] D. Fontanelli, L. Greco, and L. Palopoli, “Soft RealTime Scheduling
for Embedded Control Systems,” Automatica, vol. 49, pp. 2330–2338,
July 2013.

[18] L. Abeni and G. Buttazzo, “Stochastic analysis of a reservation-
based system,” in Proceedings of the IEEE International Parallel and

Distributed Processing Symposium., San Francisco, California, April
2001.

[19] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni, “An analytical
bound for probabilistic deadline,” in Proceedings of the Euromicro
Conference on Real-Time Systems. Pisa, Italy: IEEE, September 2012.

[20] L. Palopoli, D. Fontanelli, L. Abeni, and B. Villalba Frı́as, “An analyt-
ical solution for probabilistic guarantees of reservation based soft real-
time systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 3, pp. 640–653, March 2016.

[21] A. Mills and J. Anderson, “A stochastic framework for multiprocessor
soft real-time scheduling,” in Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium. Stockholm,
Sweden: IEEE, April 2010.

[22] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[23] B. Villalba Frı́as, L. Palopoli, L. Abeni, and D. Fontanelli, “Probabilistic
real–time guarantees: There is life beyond the i.i.d. assumption,” in
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2017 IEEE, to appear.

[24] D. Vasquez, T. Fraichard, and C. Laugier, “Incremental Learning of
Statistical Motion Patterns With Growing Hidden Markov Models,”
IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 3,
pp. 403–416, Sept 2009.

[25] C. Li and S. V. Andersen, “Efficient blind system identification of non-
Gaussian autoregressive models with HMM modeling of the excitation,”
IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2432–2445,
2007.

[26] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov
Models, ser. Springer Series in Statistics. Springer, 2005.

[27] S. Karlin, A first course in stochastic processes. Academic press, 2014.
[28] L. E. Baum, “An inequality and associated maximization technique in

statistical estimation for probabilistic functions of markov processes,”
in Proceedings of the 3rd Symposium on Inequalities, 1972, pp. 1–8.

[29] P. A. Devijver, “Baum’s forward-backward algorithm revisited,” Pattern
Recognition Letters, vol. 3, no. 6, pp. 369–373, 1985.

[30] T. Shinozaki, “Hmm state clustering based on efficient cross-validation,”
in 2006 IEEE International Conference on Acoustics Speech and Signal
Processing Proceedings, vol. 1. IEEE, 2006, pp. I–I.

[31] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline
scheduling in the linux kernel,” Software: Practice and Experience,
vol. 46, no. 6, pp. 821–839, 2016, spe.2335. [Online]. Available:
http://dx.doi.org/10.1002/spe.2335

