
 

 

 
 

Health, demographic change and wellbeing 
Personalising health and care: Advancing active and healthy ageing 

H2020-PHC-19-2014 
Research and Innovation Action 

 

 
 

Deliverable 5.6 
Activity monitor: Algorithms for user activity monitor  

 

 

Deliverable due date: 05-2017 Actual submission date: 31.05.2017 

Start date of project: February 1, 2015 Duration: 42 months 

Lead beneficiary for this deliverable: UNITN Revision: 1.0 

Authors: Paolo Bevilacqua, Marco Frego, Thomas Given-Wilson, Axel Legay, Sean Sedwards. 

Internal reviewer: Daniele Fontanelli, Luigi Palopoli 
 

The research leading to these results has received funding from the European Union's H2020 Research and 
Innovation Programme - Societal Challenge 1 (DG  CONNECT/H) under grant agreement n°643644 

Dissemination Level 

R Restricted  

P Public X 

 
The contents of this deliverable reflect only the authors’ views and the European Union is not liable for any use that 
may be made of the information contained therein.  

Ref. Ares(2017)2802421 - 05/06/2017



ACANTO 
 

2 
 

  



3 

Contents 
 
 

1 EXECUTIVE SUMMARY ....................................................................................................................... 5 

2 INTRODUCTION ................................................................................................................................. 6 

3 CONTEXT AND CHALLENGES .............................................................................................................. 6 

4 STATE OF THE ART ............................................................................................................................. 8 

5 CASE STUDIES .................................................................................................................................. 10 

6 SEMANTIC REPRESENTATION OF ACTIVITY PLANS ........................................................................... 11 

7 ACTIVITY MONITORING WITH RUNTIME VERIFICATION .................................................................. 13 

7.1 ACTIVITY EXECUTION MONITOR ............................................................................................................ 13 
7.1.1 Support for groups ................................................................................................................ 14 

7.2 MOTION EXECUTION MONITOR ............................................................................................................ 14 

8 EXAMPLE APPLICATION ................................................................................................................... 15 

8.1 ACTIVITY EXECUTION MONITOR ............................................................................................................ 15 
8.2 MOTION EXECUTION MONITOR ............................................................................................................ 16 

9 LINKS WITH OTHER WORK PACKAGES ............................................................................................. 18 

10 CONCLUSION ................................................................................................................................... 19 

BIBLIOGRAPHY ....................................................................................................................................... 20 

  



ACANTO 
 

4 
 

  



5 

1 Executive Summary 
 
This deliverable contains a description about the technology for monitoring activity plans. The work 
refers to D5.2 (User reactive planning) and builds on D2.6 (Activity plans representation). It is 
delivered in parallel with D5.4 (Activity planning). 
We propose that the Activity Monitor will be implemented on the FriWalk and make decisions based 
on the most recent available global state of the activity and its history. The Activity Monitor on a 
FriWalk always makes its decisions based on the most reliable information available.  
Each time an activity plan is provided by the Activity Planner, we will use a mixture of probabilistic 
reasoning and quantitative metrics to monitor the performance of an activity. Some metrics will 
provide feedback to the participants (e.g., slow down), some will trigger re-planning of the activity 
(e.g., obstructions), some will trigger a cancellation (e.g., an event is cancelled by the user because 
the hard constraints cannot be met, multiple uncooperative behaviour) and some will just be logged 
for use by the Activity Evaluator. 
This report completes the work started in P1 with the production of a preliminary document 
regarding the Activity Monitoring (D5.5). The innovative contributions with respect to the 
preliminary version are: 1. We divide the problem of activity monitoring into two different sub-
problems, i.e. a high—level monitoring regarding the whole activity and the associated global 
constraints, and a motion monitoring considering the local constraints posed by the environment 
during the motion of the FriWalk along a path (e.g. avoid collision with surrounding people). 2. The 
activity monitor considers the probability distributions of the different parameters associated to 
each action (and generated by simulations during the planning phase) to assert the probabilistic 
fulfilment of the high—level constraints (in the first version, simulations were performed directly by 
the monitor, and the constraints were asserted through the application of techniques of statistical 
model checking). 3. Section 6 (Semantic representation of activity plans) has been updated to reflect 
the latest updates regarding the modelling and generation of activity plans (as illustrated in the 
deliverables D2.6 and D5.4). 
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2 Introduction 
 
The decisions about an activity will be principally made by the Activity Monitor on individual 
FriWalks, but based on a global view of the activity obtained from the infrastructure.  
As described in Deliverable D5.4, the planning of an activity is characterised by two logical steps, i.e. 
the synthesis of a high-level sequence of tasks and its refinement in an executable plan. This splitting 
reflects naturally the shape of the Activity Monitor, which consists in two different modules: The 
Activity Execution Monitor and the Motion Execution Monitor. The first is related to the high-level 
planner and checks that the current realization satisfies the hard constraints with acceptable 
confidence. The second is part of the Reactive Planner and takes care of the non-predictable real 
status of the environment (e.g. the presence of pedestrians is contemplated but their actual position 
is unknown until runtime), captured by the sensing system. Whenever the path is declared 
unfeasible (in probability) a local re-planning of the path is enforced. 
An important extension of the Motion Execution Monitor is to handle group activities, e.g. a fleet of 
walkers that share the same high level plan. For the walkers that are part of that group, the Monitor 
has to accept the proximity of the other participants and should not invoke a dynamic re-planning. 
The correct policy is to slow down and follow the leading agents. Such agents are usually placed in 
front of the group or are selected on the base of their field of view in order to prevent occlusions and 
detect possible obstacles. This group cohesion is modelled considering the principal clothoid spline 
of the Motion Planner with a sufficiently wide offset. We call this structure a clothoid tunnel, which 
has been discussed in the Deliverable D5.2 related to the Reactive Planner. The policy is thus to 
remain in the centroid of the group keeping the fleet of walkers in a certain configuration, e.g. in 
rows. 
 
In the case of group activity, the global view will be updated frequently while a FriWalk maintains 
contact with the cloud. Under circumstances of reliable communication, the cloud and all FriWalks 
will work with an up-to-date view of the current status and make implicitly coordinated decisions 
(since they use the same software). Under circumstances of poor communication, each FriWalk will 
make decisions based on its most recent global view, updated with accurate local information from 
its own sensors. 
There is related work in the fields of robotics and multiplayer games, but the particular challenges 
described above are somewhat unique and distinct from robotics. Humans are not robots and should 
not be forced or coerced to follow a rigid path except, perhaps, under extraordinary circumstances. 
This would defeat the objective of ad hoc social interaction and personal preference. Moreover, the 
environment is not fixed (by virtue of the existence and movement of other pedestrians and 
unforeseen obstacles), hence the notion of an a priori “optimal plan” is to be intended in weak sense: 
the optimality is subject to the information available at the moment the plan is designed. In ACANTO 
we undertake a dynamic group motion planning and monitoring problem, where the notion of 
optimality is defined by respecting hard constraints and optimising the quantitative metrics of an 
activity. 
We will use a mixture of probabilistic reasoning and quantitative metrics over traces to monitor the 
performance of an activity. Some metrics will provide feedback to the participants (e.g., slow down), 
some will trigger re-planning of the activity (e.g., obstructions), some will trigger a cancellation (e.g., 
multiple uncooperative behaviour) and some will just be used to help improve the activity for the 
future. The activity monitor will principally work at the low level of sensor data (mass, velocity, 
position, etc.), based on a specification compiled from an activity plan defined in a variant of the 
PDDL language, as outlined in D2.5. 
 

3 Context and challenges 
 
This section presents the context and challenges for the ACANTO project with respect to the 
monitoring of activities. An activity in ACANTO has the intention to provide therapeutic benefit and 
enjoyment for each user of the system. Therapy includes engaging in exercise and thus burning 
calories. Enjoyment includes visiting places and seeing sights of interest. Social interaction with 
friends can provide both therapy and enjoyment, so activities are primarily intended for a group of 
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participants. Both individual and group-related metrics are therefore of concern to the Activity 
Monitor.  
We assume that the Activity Planner will create a suitable Activity Plan to meet the needs and 
constraints of all the intended participants, based on input from the Activity Generator. This includes 
ensuring that for each participant (FriWalk user), a feasible path exists that satisfies the user’s 
constraints and requirements. That is, a path exists that avoids the user’s undesirable areas and is 
sufficiently challenging, without being too challenging, to meet the user’s therapeutic requirements. 
Meeting all the users’ constraints and requirements suggests that the group of participants are likely 
to have similar profiles. Even if this is so, activities may need to include enforced pauses to allow 
slower participants to catch up. The chosen route of the activity must have sufficient capacity (free 
space along the way) for the number of participants. 
Once a plan has been decided by the Activity Planner and initiated, its execution needs to be 
constantly monitored. The purpose of monitoring is to ensure that: (i) the users’ hard constraints are 
met (i.e., always … , never …); (ii) the users’ soft constraints are met most of the time (i.e., try to …); 
(iii) the users’ therapeutic goals are met; (iv) the social and enjoyment goals of the activity are met 
(interaction between participants and with the environment) and, finally; (v) to log the activity for 
offline evaluation by the Activity Evaluator. 
Implicit in the achievement of (i)–(v) above is the ability to respond to changing environmental 
conditions and uncooperative behaviour of the participants. The changing environmental conditions 
here includes unforeseen obstructions that may prevent the activity from following its intended 
course, rather than the instantaneous obstructions handled by the Reactive Planner. Uncooperative 
behaviour refers to participants who choose (or are forced) not to follow the activity plan. 
 
 
 

 
Figure 1 

 
Figure 1 illustrates the basic relationship between the Activity Planner, the Reactive Planner (with 
the Motion Monitor), the Execution Engine and the Activity Monitor. The Activity Planner constructs 
an activity plan from a palette of alternatives, considering all the preferences, hard constraints and 
soft constraints of all the participants. Each Reactive Planner monitors its user’s physical location 
with respect to the nominal plan, other moving and static objects in the environment, and the 
constraints it is provided (e.g., desirable proximity to others). Users may not necessarily follow the 
suggestions, but at all times the sensors calculate the user’s actual position with respect to 
surrounding objects and upload the information to the cloud. This global information is curated and 
made available to each FriWalk, for the use of their Reactive Planner and Activity Monitor. The 
Activity Monitor monitors the user’s progress with respect to the high level goals of the activity (e.g., 
adherence to intended route, group coherence, calories burned, exercise) and reacts accordingly to 
any deviation. 
Unforeseen obstructions that cause the activity to be re-planned will be handled locally, however the 
information about the obstruction will be uploaded to the cloud for distribution to the other 
FriWalks. Depending on the nature of the obstruction and blockages, the Activity Monitor decides if 
the activity remains feasible (e.g., if a feasible re-routing is possible), otherwise it signals the 
information to both the Planner and the Execution Engine. 
In D2.6 (Activity plans representation) we identified the PDDL class of languages as suitable to 
represent an activity plan at a syntactic level. Variants of PDDL contain all the quantitative, temporal, 
probabilistic and nondeterministic elements that we need, decomposing the activity into a sequence 
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of tasks. At an abstract semantic level, an activity is the traversal of a graph annotated with metric 
information. An activity plan will be devised using the graph resulting from an abstraction of the 
environment. Thus, the Activity Monitor will consider the traversal of a graph, whose nodes are the 
Points of Interest defined in PDDL. 
In Section 5 we identify the notion of a user’s hard and soft constraints, respectively those which 
must be adhered to and those which it merely desirable (perhaps probabilistically) to adhere to. In 
addition to general constraints, a user’s profile may also include activity-specific constraints, such as 
the minimum and maximum amounts of exercise required / allowable or the desired number of 
calories to burn. The activity itself will have global requirements, such as the places to visit and the 
desired amount of group cohesion (how well the group stays together). 
The success of an activity will be judged by how well it achieved its global objectives and by its worst 
performance with an individual participant. Considering an average or sum of individual 
performances could mask the fact that the activity under-performed with some participants. The 
Activity Monitor will thus need to keep track of both local and global metrics, i.e., metrics that apply 
to individuals and to the group as a whole. In general, such metrics will be temporal (include timing 
constraints), history dependent (calculated over a path, not just a state) and monitored continuously. 
During the course of an activity, the Activity monitor will use these metrics to: (i) influence the 
behaviour of participants without affecting the activity plan (e.g., cause a participant to slow down); 
(ii) modify the activity (e.g., re-routing on the graph to avoid an unforeseen obstacle); (iii) stop the 
activity (e.g., due to uncooperative behaviour by multiple participants) and, finally; (iv) to log the 
activity for post-processing by the Activity Evaluator. 
 

4 State of the art 
 
In this section we briefly review the literature closely related to the challenges of the Activity 
Monitor and with regard to the technology already chosen for the management of other aspects of 
the activity. 
In D2.6 (Activity plans representation) we made the case to view our planning problem as a 
sequence of discrete control actions that change the configuration of the system. The motion 
planning problem thus becomes a task planning problem, with the motion being emergent of 
completing the tasks. This discretisation simplifies the consideration of motion in continuous space 
and provides a simple metric for analysis and monitoring. 
We identified the PDDL class of languages, standard in the field of robotic planning, as being suitable 
to represent an activity plan at a syntactic level. PDDL generally allows tasks to be defined with pre- 
and post-conditions. Specific variants of PDDL allow the expression of complex temporal and 
quantitative constraints to complete an overall mission [3] [4] [5] [6]. Other variants permit the 
inclusion of soft constraints via probabilities [7] and the inclusion of nondeterminism to model 
partial knowledge [8] [9]. Of particular relevance to group activities are extensions to include 
multiple agents [10]. While there are no off-the-shelf solutions to our group motion planning and 
activity monitoring problems, there are a number of pre-existing open source parsers of PDDL 
languages [14] [15] [16]  which we may incorporate. 
Since ACANTO activities are intended for a group of participants, we briefly review some of the 
previous work that considers group motion planning and monitoring.  
Collaborative planning that involves both robots and humans has been considered before [17]. The 
authors develop some notions of partial plans, shared plans, and how to achieve successful 
collaboration without conflicts along the way. The approach is a general discussion of ways that such 
plans can be represented and reasoned about. While interesting in a foundational sense, and also in 
the sense that both robotic and human agents are considered, this does not really apply well to our 
domain. The main limitations are that the notion of plans does not align with those of ACANTO, and 
the authors explore foundational concepts rather than the implementation details required for a 
working system. 
Some similar ideas are considered in [18] where the authors also consider collaborative planning 
between humans and machines. However, the focus of their work is on architectures for supporting 
such planning, rather than the specific capabilities of particular machines. Thus, although such 
architectures are interesting in a broad sense, they do not align with the specific problems posed by 
the ACANTO project. 
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In [19] the author makes arguments for augmented distributed artificial intelligence (DAI) being able 
to improve solutions to multi-agent collaborative and / or competitive systems. They present 
examples and arguments from game theory and physics as well as DAI background to support their 
approach. This paper is mostly a position paper on what could be done and makes good arguments 
for cross-disciplinary approaches. However, since there are not significant results and development 
of the concepts in a meaningful sense for our applications, this remains interesting but not directly 
related. 
In [20] the authors present and architecture for behaviour-based agents (ABBA) that can be used for 
planning and collaboration between robots. The ABBA exploits communication between agents to 
allow for collaborative response to requirements, and this exhibits collaborative planning behaviour. 
However, this does not support the kinds of behaviours we wish to consider for this project, since 
the robots focus on small command tasks and do not have a larger plan that would correspond to our 
activity plans. Although we could potentially shoe-horn activity plans in, the underlying assumptions 
about behaviour (robot as opposed to human), communication (reliable as opposed to unreliable), 
and activity (robots here do not activate at all times, here we cannot turn humans “off”), this does not 
fit well with our scenario. 
Centralised planning approaches are considered in [21] where the authors show that existing 
efficient centralised planning approaches can fail to find an optimal solution for path planning for 
multiple robots. They then explore some different approaches to planning that can consider different 
constraints and requirements of the robots involved. They show that even taking these into account 
they can improve the overall planning results by randomising some aspects of path searching. 
Although somewhat interesting, the domain of the research is quite different. The research focuses 
on robots, while in ACANTO our agents may not be cooperative and are human. Further, to do the 
planning as in [21] requires stricter communication and centralisation than we assume in the 
ACANTO project. Thus, although some of the key ideas may be interesting for solving the overall 
issues of handling many constraints at once, the domain is quite different. 
There is a body of research that may appear related in swarm planning for robotic agents [22] [23] 
[24] [25] [26] [27]. The key concepts are for various agents to collaborate in finding paths or routes 
within an environment that allows them to navigate. Further, such systems are typically meant to 
operate with agents having limited information about the environment, limited communication 
capabilities, limited computing capabilities, and to be ``fault tolerant''. Superficially this seems to 
match the goals of ACANTO quite well, since we also consider (in this deliverable) problems related 
to path (that can be as an abstraction for an activity) planning for multiple agents with similar 
limitations. However, the differences become quite significant when further detail is considered. The 
various agents in swarm systems do not have the proximity requirements that groups do in the 
ACANTO system, instead swarms spread out in some phases to improve their path finding. Often 
swarm path finding is related to finding a path to some objective whose location is unknown, while 
in ACANTO the activity plan generally identifies a path on a larger scale, with small detail left to the 
reactive planner. Relating to this, the swarm agents tend to become landmarks or locations as part of 
some swarm approaches, whereas in ACANTO we do not consider leaving agents alone as markers of 
paths. Lastly, the fault tolerance of swarm systems is typically in allowing failure of some (or many) 
of the agents as long as a larger goal is achieved. In ACANTO we cannot allow “failure” for any agent 
for many conditions, so instead we must operate in a much more restrictive manner towards agents' 
needs. There are other differences as well, but for these reasons we largely cannot adapt ideas or 
concepts from such works on swarms of agents. 
Shifting further into collaboration in planning between agents, in [32] the authors consider how to 
improve path planning algorithms for multi-agent teams. The main development over prior work 
[33] [34] [35] is in allowing agents to modify the plans of other agents during path planning. This is 
in addition to respecting various constraints and requirements for each agent. Although some of the 
key problems are similar, and the modification of other agents’ plans may be useful to consider in 
ACANTO, the approach does not easily transfer. The path planning is quite different in that the focus 
of [32] is collision avoidance and path optimisation, while in ACANTO paths would be made to 
coincide as much as possible. Also, their approach considers stronger coordination requirements 
than we assume in the ACANTO project, and more centralised planning. Although some of the 
concepts may adopted to some degree, the core algorithms do not easily transfer. 
In [36] the authors consider how to collaboratively find paths for road vehicle coordination. This has 
similarities to the ACANTO project in that planning is done by agents in a collaborative manner, and 
may involve actions that come from humans (drivers) rather than strictly robots (self-driving 
vehicles). They adapt some centralised planning approaches and show how they can be modified to 
work to some degree in a decentralised scenario. They focus upon rapid results as the paper 
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concerns collision avoidance. The approach presented is useful to observe the adaptations from 
centralised to decentralised planning, although the domain for collaborative monitoring and 
planning in ACANTO is less time constrained as collision avoidance is handled by the reactive 
planner. 
 

5 Case studies 
 
We briefly recall three case studies identified by WP1 and used in D2.5. The resulting hard 
constraints, soft constraints and preferences are summarised in Table 1, for reference in other 
sections of this document. 
 
Isabel 
 
Isabel is an 82 years old woman who has lived alone for the past two years. She lives in a flat by 
herself in Newcastle. She no longer goes out very often and has become very physically inactive, even 
if her doctor suggested to stop with this unhealthy behaviour. Her daughter brings her groceries 
once a week. While Isabel used to enjoy going for walks, she no longer has anyone to go walking 
with. She recalls the times she spent walking with fondness and wishes that she had someone to go 
walking with. One day, she receives an invitation by mail to try out the new FriTab and FriWalk 
system. After receiving the system when a researcher visits her, she tells the system about her 
background and interests. She tells the system that she used to enjoy walking. Later that day, the 
FriTab suggests that she meet a lady in the next street, Martha, who likes to visit the local shopping 
mall and has the same platform. The system has noticed that Isabel does not have many friends and 
believes that if she had a friend who also enjoyed going for walks, she might go there again. Isabel is 
hesitant at first but then agrees to meet up and try out the FriWalk. The FriTab tells Isabel to meet 
Martha the following Wednesday at 10am to enjoy a morning together at the shopping mall. Once 
she arrives to the shopping mall, the FriWalk shows the directions to get in touch with Martha at the 
prescribed time. Since Martha has a similar FriWalk, the two ladies meet with any problem. Isabel 
and Martha go for a walk in the mall and decide to buy some groceries on their own. The FriWalk 
suggests the route and monitor the execution of the activity, in order to report to her medic the 
physical activity that has been carried out. During the walk, the FriTab realises that Martha feels a 
little bit tired and suggests to interrupt the planned activity. The FriTab suggests Isabel and Martha 
to have lunch in a local cafe. The FriWalk devices guides them gently to the desired cafe where they 
have a pleasant lunch and agree to meet up again in the following days. 
 
Michael 
 
Michael is a 72 years old man who lives alone in Felling, Gateshead. For the past few years, he has 
found mobility very difficult and he is waiting for a hip operation. Consequently, he doesn’t get out 
much. He used to enjoy visiting museums and now fulfils his passion for natural history by watching 
documentaries on TV. He would like to be able to get out to visit the museums in Newcastle. 
A researcher visits Michael one day and shows him the FriTab. Michael explains to the researcher 
that he has mobility problems so wouldn’t be able to get out much. But the researcher explains the 
FriWalk to him which is owned by several shops, galleries and museums in the area. He also explains 
that people on the FriTab network may be able to help him get transported to locations and events. 
So Michael enters his details into the system and tells it that he has mobility problems. The 
information on  Michael’s profile are also updated by his doctor, who also enters some constraints 
concerning the activities Michael can safely carry out. 
The next day, the FriTab shows Michael that a tour is being organised at the Hancock Museum. It 
invites him to attend and tells him that another person attending would be willing to pick him up. 
The system knows that Michael enjoys natural history and that he also has mobility problems. It 
knows that the museum has several FriWalk devices that can help Michael. It also knows that one 
other attendee has a car and is willing to transport friends. Michael is hesitant but agrees to give it a 
try. So he tells the system that he will attend. The FriTab tells him that Jane will pick him up before 
the event in her car. Michael tells her his address. 
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At the arranged time, Jane picks Michael up and they drive to the museum. When he arrives at the 
museum, he is given a FriWalk which helps him to walk with the rest of the tour group. After the tour 
is over, the FriWalk even suggests a guided tour of its own that Michael can do alone without 
violating the medical prescriptions. However, Michael is tired but decides to come back and try the 
guided tour another day. The FriTab forwards the activity log file to the network for user profile 
updates.  
 
Dorothy 
 
Dorothy is a 69 years old woman who lives alone in Blaydon. Dorothy uses a walker to get around 
because she finds that it gives her confidence after her fall one year ago. Moreover, it helps her in 
keeping a constant physical activity for a correct rehabilitation, according to the medical 
prescriptions. Dorothy loves shopping and likes it when her friend occasionally takes her shopping at 
the MetroCentre. While she likes the MetroCentre, she is nervous about going there alone and 
worries that she would get lost. But she would like to go there more often. 
Dorothy is shown the FriTab and told that it clips onto FriWalk devices which are available at the 
MetroCentre. She decides to try out the FriTab system.  Several days later, the system suggests that 
Dorothy visit the MetroCentre to enjoy some shopping. The system has noticed that Dorothy has 
stayed indoors for several days and believes that she would benefit from getting out. Dorothy thinks 
that it would be a good idea and asks the FriTab for more information. The FriTab suggests that she 
get the 2:15 bus from the nearby bus stop which will take her to the MetroCentre. It tells her that it 
will give her directions to the MetroCentre and will help her find her way around inside. 
She gets the bus and travels to the MetroCentre. When she gets there she swaps her walker for a 
FriWalk and clips in her FriTab. The FriTab shows her that several shops have sales and gives her 
directions. Furthermore, it also advices her of the presence of her friends Rita and Marion, both 
equipped with a FriWalk. Dorothy meet them in front of the Central Café and then take a walk in 
some shops. The FriTab suggest them to go to the theatre inside the mall to see a romantic movie. 
After the movie, Rita and Marion decided to go home, while the FriTab suggests Dorothy to visit the 
mall first floor to take a look to some very affordable items at the shoe shop. Meanwhile, Dorothy 
accomplishes her daily schedule of physical activities. After a while, when she starts feeling tired, she 
presses a button on the FriTab and it directs her back to where her walker is. She unclips her FriTab 
and it tells her where to get the bus home. 
 

Use Case Hard Constraints Soft Constraints Preferences 

Isabel 
1. Always remain ≤ x m 

from the bathroom 

I. Level of 
tiredness 
always < y 

A. Walking 
B. Meeting someone who 

enjoys walking 
C. Visiting the grocery store 

Michael 

2. Avoid stairs 
3. Maximum walked 

distance < x m 
4. Speed always < y 

 

II. Avoid crowded 
rooms 

D. Interest in natural 
history 

E. Visiting museums 

Dorothy 

5. Never remain alone 
6. Walk ≥ x meters 
7. Walk ≥ y minutes 

(medical prescriptions) 

III. Waiting at ≤ x 
minutes at the 
bus stop 

F. visiting shops with sales 
G. visiting clothing shops 
H. watching romantic 

movies 

Table 1 Summary of use cases 

 

6 Semantic representation of activity plans 
 
This section describes the concepts behind our semantic representation of activity plans, 
highlighting the consequences of our choices for the Activity Monitor. 
In D2.5 (Activity plans representation (preliminary)) we proposed a graph-based semantics to 
underlie activity plans. This approach uses familiar concepts from GPS satellite navigation and has 
already been successfully applied in a related assistive technology context [11] under the DALi 
project [1].  
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Nodes are annotated by their semantic location in the environment (e.g., supermarket, bakery, toilet) 
and with their physical coordinates. Likewise, edges are annotated (weighted) with the distance 
between their adjacent nodes. To account for user preferences (e.g., not straying too far from a toilet 
– hard constraint 1 in Table 1 – or not getting too close to a noisy arcade – soft constraint II in Table 
1) and avoiding general crowding (observed by cameras in the environment), the edges are made 
directional and “lengthened” (their weight is increased) according to crowding and desirability of the 
destination node [11]. Impassable temporary obstructions are handled by removing sections 
(subgraphs) of the graph.  
In D2.6 we identified the PDDL class of languages as a suitable means to represent activity plans at a 
syntactic level. These languages transform a motion planning problem into one of task planning, 
decomposing the problem into a series of goals and making it easier to deal with motion in 
continuous space. Variants of this language have incorporated notions of rewards (e.g., to model 
calories burned), nondeterminism (e.g., to model partial knowledge) and probabilities (e.g., to 
represent soft constraints), which are necessary for our application and align well with our statistical 
model checking technology. 
In D2.6 we showed a simple direct correspondence between a global plan (the a priori optimal path 
through the graph abstraction of the environment) and its description in PDDL. An activity plan must 
of course account for multiple users and therefore multiple trajectories. The concrete trajectories of 
participants will be concurrent in time and space, so must be disjoint. This creates a question as to 
how the global plan of a group activity should be represented.  
An activity plan could conceivably comprise a path in the graph, chosen to satisfy all the constraints 
and objectives of the activity and its participants. The abstract plan is translated into a single path 
made of a sequence of clothoid tunnels that encompass the whole group of participants. A 
participant’s Reactive Planner will then try to stay within some maximum distance from the centroid 
of the group while remaining inside the tunnel. 
Within a group activity there can in general be no a priori notion of an optimal path, since concepts 
such as socialisation are effectively nondeterministic. That is, how the participants interact within 
the group cannot be known or specified in advance, hence it is not possible to optimise. Our use of 
PDDL allows us to treat the activity plan as a transition system and thus apply probabilistic 
reasoning and optimal controller synthesis to activity planning and monitoring. Given a transition 
system with nondeterminism, it is possible to calculate the maximum and minimum of metrics over 
executions of the system (e.g. min/max estimation of time or distances for completing an action). If 
the nondeterminism can be refined to a probabilistic distribution, it is possible to calculate or 
estimate the expectation of the same metrics. 
The Activity Planner may thus create an activity plan that is provably capable of achieving the goals 
of the activity in a probabilistic sense. The Activity Monitor will report the actual performance of the 
activity, which can then be compared with its expected performance bounds by the Activity 
Evaluator. Whenever the success probability of achieving a goal decreases below a certain threshold 
value (but the goal can reasonably still be achieved) a warning is shown to the user on the FriTab. 
For instance, invite the user to move a little faster, interrupt the visit to the current Point of Interest, 
etc. If the user is not collaborative, and the goal becomes unfeasible (e.g. probability of success below 
a minimum value), the Activity Planner is invoked to update the activity plan on the basis of the soft 
and hard constraints (e.g. remove some Points of Interest from the plan). 
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7 Activity monitoring with runtime verification 
We recall briefly the structure of the high level activity plan, produced by the Activity Planner. This 
plan takes care of the sequence of tasks required to satisfy the needs of the user, e.g. finds the best 
path and times to visit some Points of Interest, respecting opening times, etc. Each task is subdivided 
into elementary actions, which are of low level, e.g. move from 𝑃0 to 𝑃1on a particular clothoid.  
 

Each elementary action has its own properties that are evaluated by the Monitoring Service. The 
most important are the duration and the distance, but there can be more. Those properties are used 
to check if the global plan is still feasible or not. For instance, if a particular action takes too long to 
be completed, it is possible that the next steps become unfeasible, e.g. a shop closes, we miss the bus, 
the user is too tired, etc. There are a number of such constraints that although feasible from the 
theoretical point of view of the high level plan, can become unfeasible in practise. The reasons of 
those failures can be addressed in two main categories: user decisions and needs, external causes as 
unforeseen obstacles and problems. Some failures produced by an user’s decision may be if the user 
enjoys the Point of Interest and prolongs the visit more than the estimated time, encounters a friend 
and stops to chat. In the second category (external problems) threre are, for example, obstacles on 
the path or crowded zones that cause a long waiting time. 
Therefore, the Monitoring Component is divided into two parts: The Activity Execution Monitor and 
the Motion Execution Monitor. The first component checks if the current status of the execution 
respects the constraints so that the plan can be completely accomplished, the second component is of 
lower level and is used to analyse the single elementary actions that build the activity plan. The 
external problems are herein considered, for example obstacles on the path, that require a deviation 
and therefore an increase in the execution time of the elementary action. 
 

7.1 Activity Execution Monitor 
 
All the activities executed by the FriWalk are composed by a sequence of tasks, where each task 
consists in a sequence of elementary actions to be executed (see D5.4). During the execution of an 
activity, the Activity Execution Monitor service is required to periodically check the execution status, 
and to verify that the probability of violating the hard constraints associated to the activity remains 
under a certain threshold value. 
In particular, given a hard constraint (e.g. the total duration of the activity is lower than 3 hours), and 
the current status of the execution (e.g. the user is still performing the jth task at the current time t), 

Activity Plan

Task 1

Task 2

....

Task n

Task i

Next PoI 𝑃𝑘 to 𝑃𝑘+1

Task j

Next PoI 𝑃𝑚 to 𝑃𝑚+1

Elementary 
Actions

initialise

move 𝑃𝑘 to 𝑃𝑘+1

visit 𝑃𝑘+1
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the probability of violating the constraint corresponds to the probability that the sum of the times 
required to complete the current and all the subsequent tasks is greater than the remaining time. As 
explained in deliverable D5.4 (Activity Planning), we assume to know the distributions of 
probabilities for the physical parameters regarding the different actions performed during the 
execution of an activity (e.g. duration), that are collected from the KnowledgeBase, and from 
simulations performed directly on maps of the environment, considering the scenario identified by 
the current real time information obtained from the sensing system. Thus, the probability density 
function for the duration of a sequence of actions is computed as the convolution of the density 
functions associated to each action. 
Whenever the Activity Execution Monitor is invoked, it computes the probability of violation for each 
of the hard constraints related to the activity. Whenever the monitor discovers a hard constraint that 
could be violated with a probability greater than some given threshold value (e.g. 10%), it marks the 
current activity as unfeasible, and invokes the Activity Planner to generate a new plan, according to 
the mutated scenario.  
 
 

7.1.1 Support for groups 
 
The Social Activities within ACANTO are characterized by their “social” aspect, and thus are in 
general shared and executed by more users. However, for all the users belonging to the same group, 
the sequence of actions defining the Activity is the same, while the set of hard and soft constraints 
and preferences will be different for each user. Since the Activity Execution Monitor is required to 
ensure the fulfilment of all the hard constraints (at least in a probabilistic sense), in the case of a 
group of users, the hard constraints associated to an activity should be defined as the conjunction of 
all the hard constraints associated to each of the users. Thus, for example, if a user requires the 
overall duration to be lower than 3 hrs., while another user requires an overall duration lower than 2 
hrs., the hard constraint of the second user prevails. 
 
 

7.2 Motion Execution Monitor 
 
The motion plan is based on a high level plan produced by the Activity Planner. As previously 
described, this a priori plan takes into account the available knowledge of area to be travelled, with 
the various constraints and Points of Interest. It considers the physical parameters of the user and 
the preferences. This high level plan is split into elementary actions that are passed to the Motion 
Execution Monitor, which is a specific component of the Reactive Planner. This monitor is of low 
level and takes care of the various information obtained by the sensing system of the FriWalk, e.g. 
sensors.  The gathered information is then merged and used to check if the elementary task can be 
safely executed or not. A typical case is the presence of a person along the walker’s path that cannot 
be predicted at high level. For example, the Activity Planner knows that the current area is not 
crowded and thus is a good choice for the a priori plan, however a particular person on the path 
cannot be exactly predicted. The Motion Execution Monitor recognises from the sensing system the 
presence of such an unforeseen obstacle if it is in a relatively short horizon in front of the walker. A 
collision analysis is then performed, it is possible that the obstacle is crossing the walker’s path but 
at a safe distance or at a safe time, in such a case no further action is needed. Otherwise an action of 
the Reactive planner is invoked. This can produce a simple slow down of the walker to let the 
obstacle pass, a complete stop of the walker or a call of a dynamic (local) re-planning. The easiest 
situation is to slow down the system without changing the path, a more involved case requires the 
design of a new local path that provides a dynamic obstacle avoidance, leaving for a while the current 
(optimal) high level path in favour of a suboptimal, but mandatory, deviation. The Reactive Planner 
takes care of such a local deviation and returns a path that reconnects to the high level plan after the 
obstacle has been avoided. In facts, the hypotheses are that the high level plan is optimal and the 
occasional local modifications of the speed or deviations are only suboptimal local perturbations of 
the original plan.  
More in detail, the Motion Execution Monitor measures the probability of success of the task under 
analysis: the task is declared as not feasible if its success probability is below a certain threshold. In 
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such a case the Reactive Planner is required to find a solution: the cheapest solution is to temporarily 
reduce the walker’s speed. However, this is not always sufficient, i.e. the obstacle stands still on the 
walker’s path and must be avoided changing the current path or the obstacle is moving against the 
walker causing a collision. The Motion Execution Monitor waits for a feasible solution of the Reactive 
Planner, and if there is one, it is analysed as any other elementary task and hence processed, 
otherwise, if the dynamic re-planning fails, a new high level plan is requested. The high level planner 
has thus to be informed of a new forbidden area and must produce a new global plan from the 
current position of the walker to its destination. 
We consider two types of obstacles, static and dynamic ones. The presence of an unforeseen static 
obstacle will require a local dynamic re-planning. This works well in practise if the size of the 
obstacle is not too big with respect to the size of the walker. If it is not the case the Reactive Planner 
will declare a failure and a high level re-planning is required.  
 
 

8 Example application 
 
In this section we present a simple application of the techniques presented in section 7.  
 
 

8.1 Activity Execution Monitor 
 
To illustrate a simple use case scenario for the Activity Execution Monitor we simulate a “toy” 
activity, composed by a sequence of elementary actions, as shown in Figure 2.  

 
 

Figure 2: Sequence of elementary actions composing a simple activity 

 VISIT P2 

 MOVE P1 P2 

 MOVE P2 P3 

 VISIT P3 

 MOVE P3 PG 
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To each elementary action composing the activity is associated a probability density function 
associated to the parameter representing the maximum amount of time required to complete it.  
Moreover, a global constraint 𝑐1 is associated to the activity, i.e. “the overall duration of the activity 
must be lower than  𝑡max”, where 𝑡max = 1200 s. 
The probability of respecting the constraint 𝑐1 assuming that the action 𝑇𝑖  have been started at time 
𝑡i, and is still executing at the current time 𝑡cur, can be computed as:  
 

𝑝𝑐1 = 𝑃(𝑇end ≤ 𝑡max) = 𝑃(𝑇𝑖 + 𝑇𝑖+1 + 𝑇… + 𝑇𝑛 ≤ 𝑡max − 𝑡𝑖|𝑇𝑖 > 𝑡cur − 𝑡𝑖) 
 
where 𝑇end is a random variable representing the overall duration of the activity, while 𝑇𝑗  is a random 
variable representing the duration of the action 𝑗. 
At the beginning of the execution, when the monitor is invoked for the first time, the values are:  
 

𝑖 = 1, 𝑡𝑖 = 0, 𝑡cur = 0  
 
and the probability of respecting the constraint   
 

𝑝𝑐1 = 0.98  
 
is above the threshold (= 0.9), thus, as expected, the activity is considered feasible. 
Now assume that after 5 minutes, the user is still performing the first action of the activity:   
 

𝑖 = 1, 𝑡𝑖 = 0, 𝑡cur = 300  
 
and the probability of respecting the constraint   
 

𝑝𝑐1 = 0.64  
 
now is below the threshold (= 0.9), thus the Activity Monitor considers the current activity as 
unfeasible, and invokes the Activity Planner to update the current plan and to render it feasible again 
(e.g. by removing some intermediate points of interest from the activity). 
 
 

8.2 Motion Execution Monitor 
 
A simple use case scenario for the low—level motion monitoring is shown in Figure 3. The walker is 

Figure 3: simple example of a pedestrian crossing the 
path of the FriWalk 
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moving along a planned path, while a pedestrian is approaching from the right. During the motion of 
the FriWalk, the Motion Execution Monitor is constantly invoked to check the feasibility of the 
current path. Whenever some people enter the field of view of the FriWalk, the monitor estimates 
possible trajectories based on their current position and heading. Then, the monitor determines the 
probability of collision taking into account also the estimated velocity of both the walker and the 
dynamic obstacles, and computing for each time instant the probability that a certain portion of the 
path will be occupied (see Figure 4). 

 
 
 
Whenever the probability that the trajectory of the walker (the black line in the plot in Figure 4) will 
collide with some of the dynamic obstacles in the environment becomes greater than a certain 
threshold value, the Motion Execution Monitor will invoke the Reactive Planner to locally update the 
current trajectory as appropriate. 
 
 
  

Figure 4: plot showing the probability that a certain portion of the path will be 
occupied  over time (in red), and the trajectory of the Walker (in black). 
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9 Links with other work packages 
 
The technological aspects of this deliverable have close links with deliverables of WP2 and with the 
other deliverables in WP5. This deliverable specifically refers to D5.2 (User reactive planning), builds 
on D2.6 (Activity plans representation) and is delivered in parallel with D5.4 (Activity planning). The 
“social” requirements of the Activity Monitor (e.g., to monitor the preferences, and hard and soft 
constraints of participants) have been led by the case studies and user requirements identified by 
WP1. 
The notion of a group is key to an activity and thus key to the Activity Monitor. In D5.2 we describe 
how the Reactive Planner suggests an optimal direction to each participant of an activity by 
“monitoring” the presence of static and dynamic obstacles. In contrast, the Activity Monitor monitors 
the feasibility of the “high-level” activity, considering specific activity-related metrics. In both cases 
performance is judged with respect to user preferences and an a priori optimal “global plan” for the 
whole group.  
In D2.6 (Activity plans representation) we proposed the PDDL class of languages to represent an 
activity at a syntactic level and a graph based abstraction to represent the activity at a semantic level. 
These choices have strongly influenced how the Activity Monitor functions. In particular, PDDL 
decomposes motion planning into a sequence of control actions with pre- and post-conditions. 
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10 Conclusion 
 
We have provided an investigation and demonstration of the challenges and algorithms for 
monitoring activity plans. Individuals have personal (selfish) requirements and constraints, while 
the desirable characteristic of a group activity are based on cooperation and communication.  
Groups pose technical challenges in terms of both planning and monitoring. In contrast to solo 
activities, groups must be coordinated. To maximise efficiency, it is desirable to distribute the 
planning and monitoring tasks among the FriWalks, while offloading as much as feasible to the cloud 
infrastructure. Reliable communication cannot always be guaranteed, hence the FriWalks must be 
fail-safe and autonomous. In addition to some information not being available due to poor 
communication, the provided information may also contain (sensor) errors, so the overall system 
must be robust to measurement “noise” and partial information. 
To address these issues, we have proposed that the Activity Monitor will be implemented on the 
FriWalk and make decisions based on a local copy of the current global state of the activity and its 
history. Local sensor information will be sent to the cloud, where it will be processed and distributed 
to other FriWalks. The Activity Monitor on FriWalks thus makes its decisions based on the most 
reliable information it has available. A similar history is also maintained by the cloud, noting that the 
various histories stored across the system may not be identical. The principal role of the cloud is to 
“curate” the global data (e.g., resolve ambiguities and log it for the Activity Evaluator), however it 
will also have the ability to make decisions about the activity. E.g., it may wish to send a signal to the 
FriWalks to terminate the activity. 
Each time an activity plan is provided by the Activity Planner, it will be translated into a low level 
specification suitable for the Activity Monitor. We will then use a mixture of probabilistic reasoning 
and quantitative metrics to monitor the performance of an activity. Some metrics will provide 
feedback to the participants (e.g., slow down), some will trigger re-planning of the activity (e.g., 
obstructions), some will trigger a cancellation (e.g., multiple uncooperative behaviour) and some will 
just be logged for the Activity Evaluator, to provide feedback to carers and help improve the activity 
for the future. 
In D2.6 (Activity plans representation) we identified the PDDL class of languages as a suitable means 
to represent activity plans at a syntactic level. These languages transform a motion planning problem 
into one of task planning, decomposing the problem into a series of goals and making it easier to deal 
with motion in continuous space. Variants of this language have incorporated notions of rewards, 
nondeterminism and probabilities, which are necessary for our application and align well with our 
chosen monitoring technology. 
From the representation of the environment as a graph data structure we encode various metrics as 
weights assigned to the edges. For the purposes of planning, paths in the environment that optimise 
parameters of an activity can be found by finding the shortest weighted path in the abstract graph. 
The same weights can also be used to monitor the progress of the user with respect to an activity, 
and this gives great insight about actual paths and the global progress and feasibility of the plan. 
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