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Figure 30: Lattice points representing the possible landmark positions in a wide-open, unbounded room.
The FoV of the camera is represented by the shadowed region inside polytope P.

The placement optimization problem can now be formulated as the problem of finding the
maximum distance between landmarks, i.e. max(d), such that for any position and orientation
of P, at least one lattice point lies inside the polytope area. This is equivalent to finding whether
the polytope contains a lattice point for any possible position P. Due to the symmetry and
periodicity of the triangular lattice, in order to generate all the possible lattice positions, it is
sufficient to move the reference point p,, inside the rectangle R4 and change the polytope
orientation angle y in [0, /2], as depicted in Figure 31.
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Figure 31: Possible landmark positions in the rectangle R4 and corresponding partitions.

Let b = 2r - sin(a) be the FoV maximum width, i.e. the length of the base of P. In order to solve
the optimization problem, two geometrical constraints must be satisfied, i.e. d < rand d < b.
Indeed, with reference to Figure 31, if these constraints are not met, at least one triple of values
ky, ky, and y exists such that the sensor cannot detect any landmark (e.g. 1 and P in Figure
31). Consider now the polytope labelled as P3 in Figure 32. In this case, even if the base of the
polytope is larger than the distance between landmarks (i.e. b > d), the first available lattice
point lies in in the grey rectangular area adjacent to P3. This scenario suggests that we can
possibly use a sensor with a larger FoV.
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Figure 32: Pictorial examples of missed landmark detection, when the geometrical constraints d < r
(e.g- P1)and d < b (e.g. P-) are not satisfied.

With reference to Figure 33, let us consider a camera with a triangular FoV PV included into P,
ie. with r? <r, d <rV and d < bY = 2r” sin(a) Let be R” the rectangle, with base b” and
height H = h — hV = (r —r") cos(a). Since {PV U R"} € P, {PV U R"} can be regarded as
an inner approximation of polytope P, which becomes increasingly accurate as rV — r.

From this perspective, the optimal placement problem can be rephrased as follows: maximize
the landmark distance d such that Vpy, € R; and Vy € [0,m/2) there exists at least one
pij € {PYU R},i,j €L,

To find an analytical solution to this problem, first of all notice that maxd = min(r, b,) as
bV < b. Given that a, b and r are known parameters of the sensor while b”is unknown, using
simple geometric arguments, it can be shown that b¥ = 2 tan(a)(r - cos(a) — H).

Therefore, in order to maximize bV it is sufficient to minimize H. To this purpose, we should find
the smallest rectangle R” ensuring existence of at least one lattice point p; ; inside {P¥ U R"}. If
a landmark lies in PV the problem is straightforwardly solved. If instead no landmarks lie in PV,
then a landmark p; j should be inside R". This results in the fact that R;  R”. Since d < b”, the

minimum value of H such that R; € RV is

H=hy=dcosZ=22 (5.14)
Thus, the optimal distance between landmarks becomes
t_ v 2sina
dT = b’ = r—1+\/§tana (5.15)

Notice that 0 < dt < r because a € [0,7/2].

Figure 33: Approximate geometrical model for the analytical solution of the optimal placement problem.

5.2.1 Simulation results and analysis

In order to validate the correctness of the optimal placement strategy based on the analytical
criterion described above, several simulations have been performed and compared with the
results obtained with a numerical approach. In the latter case, R; was partitioned into a settable
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number of smaller sub-regions (i.e. by bisecting k, and k,, iteratively and changing y by small
steps within each sub-region). Further details on this approach are reported in [63]. Ultimately,
we checked whether analytical and numerical results converge to the same solution.

Figure 34 shows the optimal landmark distances normalized by r as a function of the sensor
angular semi-range a € (0,7/2). In the numerical case, the results refer to three different
partitions of R; (i.e. 1, 8 and 64 sub-regions). From Figure 34 it is quite evident that as the
number of partitions grows, the result approaches to the optimal one and with smaller
fluctuations due to the finer granularity of the regions explored. Ultimately, the numerical
solutions with 64 sub-regions are hardly distinguishable from the optimal solution found
analytically using (5.15).
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Figure 34: Optimal landmark distances (normalized by r) computed numerically and analytically as a
function of the sensor angular semi-range of the camera a.

In order to evaluate more clearly to what extent the estimated landmark distance values are
close to the optimal ones, further Monte Carlo simulations (105 runs) have been performed by
randomly changing both camera position and orientation for some values of a. In each case, the
actual distance d between landmarks was set purposely larger than d by a factor 8. Table 17
reports both the optimal values of dt/r and the minimum values of factor & for which, given
d = &-dT, there exists at least one configuration of the sensor (out of 105) where no landmark
is detected. The results in Table 17 show that for small values of a, dT is just slightly different
from the real optimal value.

a [rad] 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

d_ 0.32 0.46 0.53 0.53 0.46 0.35 0.18
T

é 1.08 1.02 1.02 1.02 1.02 1.01 1.01

Table 17: Optimal landmark distances (computed analytically and normalized by r) and minimum values of
factor & for which no landmark is detected in at least one out of 10° randomly generated positions and
orientations of the camera.

5.3 Application of Optimal Placement for Collaborative
Localisation in a Public Scenario

In order to evaluate the impact of optimal landmark placement on localisation accuracy in a real
case study, the results of some Monte Carlo simulations in two different indoor environments
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are reported in the following, i.e. a large wide-open room without any obstacle, and a more
realistic scenario based on the map of the Department of Information Engineering and
Computer Science (DISI) of the University of Trento. In both environments, the FriWalk
trajectories were generated using settings similar to those described in Section 5.1.3. By
applying the optimal placement strategy described in Section 5.2.1, we found that the optimal
distance between landmarks is d ~ 2 m.

In the ideal case of a wide-open room without obstacles where the triangular lattice is deployed
on the floor with distances between adjacent landmarks given by d, the front camera of the
FriWalk is always able to detect at least one landmark, regardless of camera's position and
orientation. To verify this, 200 random-walk trajectories of 180 s each were generated within a
10x10~m wide-open room. The results obtained in this case are comparable with those
reported in Tab. 17. Indeed, by increasing the distance between adjacent landmarks by just a
few percents with respect to the optimal value, it may happen that no landmark is detected.

The trajectories in an even more realistic environment (i.e. the DISI premises) were generated
using the so-called Social Force Model (SFM). This provides realistic human-like paths along
with collision avoidance mechanisms [68].

Figure 34 shows the DISI map along with six trajectories. While initial position and final
destinations are generated randomly, the main difference with respect to the case of wide-open
room is that now the optimal landmarks placement is affected by the presence of obstacles and
walls. Anytime a point of the lattice is located inside a wall or an obstacle reported in the DISI
map, obviously the corresponding landmark is not available in practice.

This problem can be partially addressed by shifting all QR codes by a fixed amount until the
number of those falling inside walls or obstacles is minimum. However, while in the wide-open
room case, anytime the camera detects a landmark, any one of its six neighbours can be
detected next (as depicted in Figure 35 on the left), the presence of walls and obstacles can
make the transition from one landmark to another impossible or much less likely, e.g. because
the trajectory is constrained by a wall, as shown in Fig. 34 on the right. This kind of situations
may considerably affect RMS estimation errors even if the landmarks layout is as close as
possible to the optimal one.

This is due to the fact that when obstacles are present, the probability of detecting a landmark
even in the case of optimal deployment decreases from 96% whenr=1mto r=87% when r=8
m. As a result, the RMS positioning errors of state variables xi, yx and 6x may increase by
between 20% and 30% with respect to the results shown in Figure 29 whend = d= 2 m.

5.3.1 Optimal placement with trajectory observations

An overview of the approach used in this section to overcome some of the limitations
highlighted previously is the following. We start from a collection of data on the trajectories
followed by the agents in the environment. Using this information, we derive a stochastic
abstraction that reproduces the trajectories with a reasonable approximation. A stochastic
abstraction is, in this context, a discrete-time Markov chain, in which states are associated with
the “typical” locations visited by the target, and transitions describe the motion between two
locations resulting from the observed trajectories and are annotated with a probability
accounting for the frequency with which the transition is observed. The use of this type of
stochastic abstractions is frequent in the literature [74], [75], [76]. In our case, a transition is
also associated with a level of uncertainty, which accounts for the loss of localisation accuracy
incurred in moving between start and end locations without using landmark information.

To describe a useful abstraction, we make use of the QR landmarks deployment described in
Section 5.2. Indeed, with such a choice we have that a landmark will be always in sight of the
FriWalk, apart from a limited set of locations depending on the particular geometry of the
environment. Hence, the locations among which construct the Markov chain abstractions are
given by the QR positions determined in Section 5.2. In practice, to solve this problem it is
possible to cast the problem of finding the minimum number of sensors and their optimal
position into the framework of mixed binary linear programming (MBLP). An important
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theoretical result of this approach is that the problem can be addressed with a MBLP of limited
size even in the presence of cyclic paths between the different locations.
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Figure 34: Six examples of agents' trajectories in the premises of the Department of Information
Engineering and Computer Science of the University of Trento.
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Figure 35: Qualitative relationship between the FoV of the robot's camera, the position of a detected
landmark and its six neighbours over a portion of a triangular lattice in the case of a wide-open environment
(on the left) and a room with obstacles, e.g. walls (on the right).

The core of the proposed abstraction relies on an oriented graph including three sets of nodes,
i.e. the source nodes S, the intermediate nodes V and the destination nodes D. Each of these
nodes set maps on a possible QR position as determined in Section 5.2. The general properties
of such sets of nodes are shortly summarized below (see [77] for details):
* The source and destination nodes can have just outgoing or incoming edges,
respectively;
* Position and heading at both source and destination nodes are assumed to be known or
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measured with negligible uncertainty;

* Attime ¢y, the robot is assumed to be located in any one of the source nodes with a given
probability;

* Every destination node is reachable from at least one source node;

* Each intermediate node represents the position of one of the possible QR landmarks to
be deployed in the environment. Therefore, a binary variable is associated with each
node. This variable will be set equal to 1 if a QR has to be placed in it or 0 otherwise;

* A node will be referred to as a successor of another node v; for if the probability that it
would be visited immediately after v; (namely in one step) is larger than zero.

As a consequence of the assumptions above, the resulting system can be regarded as a discrete-
time absorbing Markov chain. Even though the step duration in this case is not constant (as it
depends on the actual path of the robot) this is not an issue for the solution of the optimization
problem considered. Note that the set of graph edges joining the various nodes includes all the
possible transitions with probability larger than 0. In the destination nodes instead just self-
transitions are possible (i.e. their probability is equal to 1), since they are absorbing states. An
example of the resulting graph is given in Figure 36.
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Figure 36: Graph example.

We assume that the motion of the robot is based on direct observations, if available, or
synthesized by a random walk model and it is constrained only by the walls or fixed obstacles of
the room. Moreover, a final important remark about the proposed abstraction concerns with the
positioning uncertainty due to dead reckoning. In particular, the positioning uncertainty
accumulated over the path between successor nodes can be described by a random variable. In
theory, this variable is a continuous random variable. However, for the sake of simplicity and
without loss of generality, we can assume that it is multiple of a “base” uncertainty quantity
(for instance due to the minimum resolution of the measurement system).

As an example, the scenario considered in the testing phase to prove the solution effectiveness
represents the 200 m2 exposition area “Salone Donatello” of the Bargello National Museum in
Florence, Italy. As reported in Figure 37, our model considers the room entrances and exits as
source and destination nodes and, additionally, the set of POIs like paintings and sculptures
(marked with pointers). The room is split into regular squares on a grid, representing
intermediate nodes. Each square covers approximately 3 m2? and there are N = 50 available
squares on which the sensor can be placed. The range and the shape of the area of detection has
been set in order to satisfy these constraints:
* For every position of the robot in this environment at least one node is in the detection
range of the vision system, as the result of the placement of Section 5.2;
* The Robot is assumed to move freely in the space, as hypothesized previously;
* If the robot moves on a diagonal trajectory from a node to another one of the grid, the
sensing system firstly detects a sensor on the same row or column.
The deployed sensing uncertainties and the ego-motion uncertainty are supposed to be
modelled as in [78]. The Markov chain describing the motion of the vehicle inside the
environment has been generated taking into account the attractiveness of the destination nodes
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as well as the presence of the POI. More in depth, each POI has been modelled as an attractive
potential for the generation of the node sequences by modifying the probabilities of the Markov
model transition matrix, as exemplified in Figure 38. This definition of the attractive potential
fields has a close resemblance to standard robot motion planning algorithms. Even if simulated
data are used for this example, mainly due to the impossibility of accessing real data from the

museum, the model here synthesized is in perfect accordance with widely used

stochastic motion models derived from direct observations, such as the Social Force Model

widely used in the ACANTO project.
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Figure 37: Map of the “Salone Donatello” of the Bargello National Museum use case with optimal sensors
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Figure 38: Points of interest influence on the Markov chain transition matrix of the use case of Figure 37.



The optimization algorithm determines the placement of the QR codes assuming a 95 %
confidence and different values for the maximum uncertainty H. All the computations has been
performed on a desktop equipped with a consumer quad core CPU and 16 GByte of RAM, while
the total amount of trajectories, evaluated by a front-end coded on purpose in C++. The
computation time of this front-end tool and the GLPK optimizer software for the described
example are reported in Table 18, while the optimal position of the sensors for each target
uncertainty H are depicted with different shapes in Figure 37.

a [rad] 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

d_ 0.32 0.46 0.53 0.53 0.46 0.35 0.18
T

é 1.08 1.02 1.02 1.02 1.02 1.01 1.01

Table 18: Performance analysis of the “Salone Donatello” of the Bargello national museum use case.

The number of deployed sensors lowers down from 10 to 4, as expected, when H increases from
5 to 15 (i.e, a lower accuracy is requested). However, both the front-end and the optimizer
computation times increase with lower requests in term of uncertainty (being the front-end the
more computational intensive). This is due by the larger number of paths to be checked. It is
worthwhile to point out that a time limit can be imposed to the software that in these cases
provides a suboptimal but feasible solution. For instance, for H = 15, the optimizer reports a
suboptimal solution with 5 sensors in less than 10 minutes, one third of the time reported for
the optimal 4 sensors. Finally, the optimal solutions have been fed to an evaluation tool that
verifies the constraints and provides the cumulative distribution functions of the positioning
uncertainty after optimal placement for each choice of H. The solution is computed for a
maximum value of k = 22 steps, which means that over the 88 % of the trajectories reached a
destination node. This value can be considered as an index of the likelihood of the results.
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Chapter 6
Relation with others WPs

We have presented a set of algorithms and methods to support our aim of user-centric sensing
in a non-invasive way. Due to our systematic bottom-up approach of measuring biologic and
biometric signals, derivation of higher level information has been simplified. Furthermore by
establishing ZMQ as a flexible and standardized framework for communication, information
exchanges between the various project partners and, hence, to other work packages has been
eased.

From the clinical use case triggered by workshops held at the University Hospital of Getafe, the
project consortium has identified a plurality of tangible use cases resulting in automated activity
analysis for various diagnostic procedures and exercises. The rationale behind automation is a
higher degree of quantification and hence repeatability as opposed to currently manual
measurements taken, as well as the opportunity to execute these tests without the presence of
highly qualified medical professionals up to even unsupervised execution of certain exercises.
We present a fully automated solution for the prominent SPPB-test by the contributions of
FORTH, SIEMENS and UNITN. In this respect, WP3 does directly support the goals of the clinical
validation in WP8.

The user state model is meant to support activity analysis (WP4 and WP5) and hence the public
scenario by transforming the raw sensor values into higher level semantic level (i.e. vigilance,
activity index, stress) and can thus give an estimate on the overall well being on both the
emotional as well as physiological condition. Exploiting this kind of information for reactive
activity planning (i.e. during activity execution) as well as retrospective activity evaluation
based on statistical data is left open for the future.

Localization is an underlying enabler for all the activities, clinical tests and navigation tasks that
are foreseen in the project. Indeed, all the FriWalk features are feasible only once its location is
known in the environment. From this perspective, we can safely state that localization is one of
the basic pillar for the other tasks in WP3, as well as for WP4, WP5 and WP8. When
collaboration comes into play, also a tight link is enforced with WP7 for what concerns the
communication requirements.
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