Exhaustion and reduced vigilance may also be seen via gait analysis. This is taken into account
by a separate sub-model for “Gait consistency”, weighed with 10 %.

Activity (and thus the previously calculated “Activity index”) is a notable input factor for
“Vigilance” [71].

Outputs

“Vigilance” is represented by a decimal number with 0 (not alert) and 10 (highly alert). The
objective is to reach a Vigilance index (VI) of 10. Anxiety or other detrimental forms of vigilance
are not considered. The VI is calculated every minute.

Summary and calculation formula

Quantity Source Range Unit Weight
fsleep Time asleep 0/100/400/500 20 %
Time awake between Fitbit (hl
0,
fawake sleep cycles 0/20/240/400 10 %
a Arousal famera on 0/0/1/1 [-] 40 %
ace
GC Gait consistency Gait analysis 0/0/1/1 [-] 10 %
Al Activity index Al calculation 0/0/10/10 [-] 20 %

Table 13: Overview of input quantities for Vigilance index (VI); the quantities, their data source, validity
ranges (for their interpretation, see Figure 24), units and impacts for the VI are displayed.

Vi =0.0050 -7z, —0.0045 -7 +1.0909 +4-a+ GC +0.2000 - A7

sleep awake

Time asleep Time awake Gait
consistency

4.4.4 Stress

Motivation

Lazarus defines: “Stress arises when individuals perceive that they cannot adequately cope with
the demands being made on them or with threats to their well-being” [34]. Stress is commonplace
in today’s life; exceeding arousal is linked to cardiovascular disease, cancer, arthritis, and major
depression [35]. Stress and an elevated “Resting heart rate” (measured by the fitness tracker)
are linked [36] and a high resting heart rate itself correlates with many kinds of mortality
[371(39].

Inputs

Stress is associated with sleep disorders in two ways: stress provokes sleep disturbances, and
disturbed sleep provokes stress and increases risk e.g. for cardiovascular disease [40]. Both
“Hours of sleep” (about 6-9 hours per night [40]) and “Sleep quality” have to be considered [33].
So time asleep and time awake between sleep cycles, measured by the Fitbit Charge HR, are
taken into account with 10 % and 5 %, respectively.
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In its negative form, arousal is a synonym for stress and is weighed with 20 %. In a similar
manner, negative emotional valence (anxiety, sadness etc.) may be seen as a sign for stress
(impact 10 %). Beyond the former two quantities, the camera measures pain on the patient’s
face. As another natural indicator it is considered to have a strong influence (20 %).

We define the current heart rate as another input for stress, as it can be seen as a short-term
quantity indicating current stress situations. Although this quantity is measured redundantly
(by the camera and the Charge HR), we expect its availability and accuracy to be limited and
thus assign a rather low impact of 10%.

Stressed people tend to show faster walking speeds [72], which we take into account by an
impact of 5 %. It is measured by gait analysis.

“Activity” reportedly decreases feelings of stress [73], while “Vigilance” might be seen as a
synonym for stress. Both former calculated quantities are weighed with an impact of 10 %.

Outputs

“Stress” is represented by a decimal number with 0 (calm) and 10 (stressed). The objective is to
reach a Stress index (SI) of 0. Cognitive or physical stimulation or other positive forms of stress
are not considered. The Sl is calculated every minute.

Summary and calculation formula

Quantity Source Range Unit Weight
fsleep Time asleep 0/100/400/500 10 %
: Fitbit [h]
Time awake between o
fawake sleep cycles 0/20/240/400 5%
a Arousal 0/0/1/1 [-] 20 %
emo Emotional valence Cameraonface -1/-1/1/1 [-] 10 %
B Pain 0/0/1/1 [-] 20 %
HR  Heartrate Fitoit /Camera )/ 154/180/200  [/min] 10 %
on face

Viwalk Walking speed Gait analysis 0/0/1/1 [m/s] 5%
Al Activity index Al calculation 0/0/10/10 [-] 10 %
Vi Vigilance index VI calculation 0/0/10/10 [-] 10 %

Table 14: Overview of input quantities for Stress index (Sl); the quantities, their data source, validity ranges
(for their interpretation, see Figure 24), units and impacts for the Sl are displayed.

SI = ~0.0025 -1, +1.2500 +0.0023 -1
—0.5000 -emo +0.5000 — 0.1000 - AI +1.0000 +0.1000 - VI + 0.0167 - HR —2.000

—0.0455 +2.000 -a +0.5000 -v_ ., +2.000 -P

awake wal,

4.4.5 Physical indication
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Motivation

“Physical indication” is defined as a short-term field and may (in the future, after intensive
testing) trigger a warning to caregivers.

Inputs

We define high levels of “Stress” combined with “Vigilance” as worthy of indicating (impact 20
% and 15 %, respectively). Arousal and pain may also be triggers for an indication - since these
numbers already highly influence stress, their effect is somewhat doubled. Their influences are
estimated with 20 % and 25 %, respectively. Many quantities are measured by the camera; this
is why an absolutely robust camera system is needed for a PI to function.

A high current heart rate as well as an inconsistent gait may also be a source of concern
(impact 10 % each).

Outputs

“Physical indication” is represented by a decimal number between 0 (no indication) and 1
(physical indication). The objective is to reach a “Physical indication” (PI) of 0.

Summary and calculation formula

Quantity Source Range Unit Weight
. SI o
Sl Stress index calculation 0/0/10/10 [-] 20 %
- . \
Vi Vigilance index calculation 0/0/10/10 [-] 15 %
Arousal 0/0/1/1 [-] 20 %
Camera on
P Pain face 0/0/1/1 [-1] 25 %
Camera on . o
HR Heart rate face / Fitbit 0/140/200/200 [/min] 10 %
GC Gait consistency Gaitanalysis 0/0/1/1 [-] 10 %

Table 15: Overview of input quantities for Physical indication (PI); the quantities, their data source, validity
ranges (for their interpretation, see Figure 24), units and impacts for the Pl are displayed.

PI =0.2000 - ST + 0.1500 -7V1 +2.0000 -a
+2.5000 -P+0.0167 - HR —2.3333 + GC

4.4.6 Emotional balance

Motivation

We define “Emotional balance” as a feeling of personal well-being without considering short-
term “Physical indication”.

Inputs

Poor “Sleep quality” was significantly correlated with increased physical health complaints and
with increased feelings of tension, depression, anger, fatigue, and confusion” [33]. So time
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asleep and time awake between sleep cycles, measured by the Fitbit Charge HR, are taken
into account with 15 % and 10 %, respectively.

To have a broad (and thus robust) sub-model, we assume a relation of gait consistency with
“Emotional valence” (impact 5 %).

Emotional valence is a direct measure for emotional balance and thus is assumed to be of high
influence: 20 % impact.

Improvement of cognitive function in older adults [42] and reduction of depressive symptoms
[43] serve as examples here. “Stress” is detrimental to “Emotional balance” [45], weighed with
20 %.

The positive influence of activity (“Activity index”) on “Emotional balance” is widely accepted
[41]; we assumed an impact of 20 %.

A certain degree of “Vigilance” is crucial to “Emotional balance” - 10 % impact.

Outputs

“Emotional balance” is represented by a decimal number with 0 (unstable) and 10 (relaxed).
The objective is to reach an Emotional balance (EB) of 10. The EB is calculated every minute.

Summary and calculation formula

Quantity Source Range Unit Weight
fsleep Time asleep 0/100/400/500 [h] 15 %
Time awake between Fitbit o
fawake sleep cycles 0/20/240/400 [h] 10 %
GC Gait consistency Gait analysis 0/0/1/1 [-] 5%
emo  Emotional valence famera on A/0/1/1 [-] 20 %
ace
Sl Stress index Sl calculation 0/0/5/10 [-] 20 %
Al Activity index Al calculaton 0/0/5/10 [-] 20 %
Vi Vigilance index VI calculation 0/0/5/10 [-] 10 %

Table 16: Overview of input quantities for Emotional balance (EB); the quantities, their data source, validity
ranges (for their interpretation, see Figure 24), units and impacts for the EB are displayed.

EB =0.0050 -7, —0.5000 —0.0045 -¢ +1.0909 +0.5000 - GC
+2.0000 -emo — 0.4000 - ST +2.0000 + 0.4000 - 47 +0.2000 -VI

awalke
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Chapter 5
Collaborative Localisation

Accurate, robust and reliable position estimation and tracking is essential the navigation of
smart assistive devices such as the FriWalk. Compared with the smart walker developed in the
project DALi (Devices for Assisted Living), a FriWalk is able not only to self-estimate its location
using its own sensor data, but also to exploit the position information shared by other FriWalks
detected in the same area. In the specific context of ACANTO, this approach, generally known in
robotics as collaborative, cooperative or synergic localisation, can greatly increase localisation
accuracy, reliability and robustness, as it will be shown in the rest of this Chapter. Of course, the
availability of a joint, refined vision of the position of different FriWalks (also referred to as
agents in the following) can potentially enhance the semantic interpretation of user status and
activities based on the USM. Nonetheless, the flavour of the proposed collaborative localisation
is just to increase the accuracy of the local estimates and not to share a common view of the
FriWalks group as a single entity, i.e. even with the distributed approach each agent keeps track
of its own position only and exploits the relative position measurements to reduce its
uncertainty. This is mainly due to limitations in the communication bandwidth, limitations on
the dimensionality of the estimation problem as well as to constraints on the scalability of the
solution. Notice that simply sharing and collecting the position values estimated locally by
multiple FriWalks using the existing communication infrastructure between them is generally
sufficient to support the implementation of the USM-based monitoring services described in
Chapter 4, hence this is the solution that is applied for ACANTO.

In this respect, an early study on collaborative localisation is presented in [53]. In [54] the
authors envision a fully wireless synergic localisation system based on the potential ability of
clusters of 4G mobile devices to measure their reciprocal distances through a hybrid time of
arrival/angle of arrival technique. The case of collaborative localisation of wireless mobile
platforms has been also described in [55], where the so-called parallel projection method was
used to improve localisation accuracy in non-line-of-sight (NLOS) conditions. In [56] a Markov-
based probabilistic method was proposed to refine each robot’s belief about its own position as
soon as other robots are detected. An alternative Markovian approach is adopted in [57]. In this
case, first the egocentric measurement data are fused locally to create a Markov chain of robot
pose estimates. Then, both inter-robot measurement data and state estimates are transferred to
a central server, where localisation is refined by minimizing the mean square error of agents’
positions. A spring model was used in [58] to reduce the pose estimation uncertainty associated
with distance measures obtained using Wi-Fi and Bluetooth RSS data. An RGB-D camera was
instead used to observe other agents and measure the relative position with respect to them
[59].

A classic and well-established algorithm for collaborative localisation is the so-called interlaced
extended Kalman filter (IEKF) [60]. The IEKF is inherently distributed, computationally
acceptable and easy to implement. However, this solution, which was also adapted to the
ACANTO case and tested as described in D3.1.1 [61], may suffer from some estimation accuracy
problems when the rate of the relative position measurements between a FriWalk and its
neighbours tends to prevail over absolute position and orientation measurements, which leads
to non-negligible estimation cross-covariances between the estimates performed by different
FriWalks. This issue, which was thoroughly investigated in [62], can be tackled by sharing and
exchanging the cross-covariance matrices of all agents that are in the same area at a given time
even if not all of them detect each other. As a result, a modified distributed algorithm for
collaborative localisation was implemented and characterized, as described in the following.

5.1 Sensing technologies and algorithm description

In order to solve the problem of collaborative localisation of a team of FriWalks, the following
assumptions will be considered in the following:

1. N agents can move freely in the same room. The dynamic of each FriWalk does not
depend on any other agent, the only constraint to motion being collision avoidance.
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2. The position of each agent i (with i = 1,..., N) at time kT's (T s being the sampling period
. . . T .
used to discretize the system) is represented by vector pj, = [x,l(,y,l(, 9,1(] , where X},

and y,i are the agent’s planar coordinates in the chosen reference frame, while 9}; is the

angle between the longitudinal axis of the robot and the Xx—axis Xw of the reference
frame. In practice, the kinematic state of a FriWalk may include two additional state
variables u,i{,é‘,i which represent the systematic relative linear and angular velocity
offsets due to imperfect odometry. Further details on this aspect will be reported in
Section 5.1.1.

3. Each agent is able to estimate its own state autonomously (namely without the help of
other agents) by fusing odometry data with absolute position and heading measures
obtained from QR codes used as landmarks. Such landmarks are placed on the floor at a
distance d from one another over a regular triangular grid in such a way that at most
one of them can be detected by a plain monocular camera directed towards ground.

4. Besides the sensors used by each robot for its own local state estimation, every agent is
equipped with a front RGB-D camera able to recognize and to measure the relative
position between the robot’s camera and any other agents located within its detection
range.

5. All agents can share the information about their state and the respective covariance
matrices through radio transceivers ensuring high-rate and low-latency communication.

In the following, (W) = (X, Yi, Zy,) will denote the fixed reference frame in which the team of
FriWalks is supposed to be localized. In practice, (W) can be set on the map of the environment
where the FriWalks are deployed.

5.1.1 Models description

As briefly explained above, three types of sensing technologies are used for FriWalk localisation.
Two encoders mounted on the rear wheels of each agent are used to estimate position and
heading variations from a supposedly known initial location. Visual odometry has not been
included (for now) in the Friwalk to speed-up the times of development of the prototype. A
standard camera sporadically detects the QR codes stuck on the floor at known locations to
update each agent’s state about its own absolute position and orientation in the reference frame
(W). Finally, a front RGB-D camera is used to detect other possible FriWalks in the surroundings
and to estimate the relative position from them. These measures, along with the state collected
from such agents and the corresponding covariance matrices, can be used to achieve
collaborative localisation, as explained in Section 5.1.2.

Odometry: Odometry relies on two AMT102 encoders installed on the rear wheels of each
agent. In the current implementation the FriWalk wheels radius is r= 0.15 m and the rear wheel
axle length is t=0.685 m. The encoders data can be regarded as inputs to an augmented unicycle
process model. The discretized version of this model for agent i (with i = 1,...,N) is defined as
follows

Ske1 = £ (5io A®Y) = s + f (s )ADY, (5.1)
where

%(1 + 1) cos 6 2(1 + u) cos 6
2(1 + u)sin@ £(1+u)sin9

D= thre)  —Ia+s (52)
0 0
0 0

ACD}'( = [Ad)iryk + eri'k,Ad)il_k + e,",k]T is the input vector containing the displacements measured
by the right and left wheels encoders (ACI)iT,k and A(b"l,k being the real displacements at time kT
Eri,k and el"'k being the respective random uncertainty contributions) and s}, = [x%, i, 8%, uk, 5}
is vector of the state variables of the ith agent. This vector includes the coordinates (x,"{,y,"{) of

46



the rear axle mid-point chosen as a reference for position, the heading angle H,i{with respect to
Xw and finally the systematic relative offsets uk, . affecting the linear and angular velocities,
respectively, of the robot in the chosen reference point. It is worth noticing that yf{, 6}; are not
present in a standard unicycle model. However, the 5-state variable model is to be preferred to
the classic one whenever the drift caused by encoders is significant and its mean value has to be
properly estimated and compensated.

In order to evaluate if such drift terms are indeed relevant, as well as to estimate the variance of
encoders data, several experiments were performed in the laboratories of the University of
Trento. In particular, the actual position (namely the ground truth) of a FriWalk in an open
room was measured with sub-centimetre accuracy using a motion capture system Optitrack
PRIME 138 equipped with 14 calibrated cameras. The FriWalk was moved repeatedly along
straight-line, rectangular and finally random trajectories. The mean value and the standard
deviation of encoders data were finally estimated from the histograms of the differences
between the wheel angular displacements measured by the encoders in every sampling period
and the corresponding values collected by the motion capture system. The trends of the mean
value and of the standard deviation as a function of the actual angular displacement in one
sampling period are shown in Figure 25. The results of a linear least-squares fitting show that i)
the differences between left and right wheels are negligible, and ii) both mean and standard
deviation values grow quite linearly with wheels angular speed. Therefore, the use of a 5-state
variables model is perfectly justified in the case at hand.

<103

=

3
4.5 X10

\

04 =0.12A90+0.002 R

mean of encoders uncertainty [rad]
Y
standard deviation of encoders uncertainty [rad]
(=)

0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06

'gm 0.02 0.03 0.04
A @ [rad] A @ [rad]

Figure 25: Mean value (on the left) and standard deviation (on the right) of encoders uncertainty.

Front camera and QR code deployment: As shortly explained at the beginning of this Section,
the role of the front camera is to detect one of the QR codes stuck on the floor, as shown in
Figure 26. To this purpose, the camera has to be slightly oriented towards the ground in order
to ensure a front reading range between about 1 m and 2 m.

As known, a QR code is a square image containing an encoded binary matrix, which can store
different kinds of data (e.g. numerical, alphanumerical or bytes). In the case considered, a QR
code stores only an integer number g, which is univocally associated with its planar coordinates
(xqy¢) and its orientation angle 64 in in the reference frame (W). This approach is very flexible,
since the table associating each QR code number to (x4, yq 64) can be easily changed and
adapted to different environments, without reprinting the QR codes. Also, in this way just low-
density numeric-only codes can be used. The choice of using low-density QR codes increases the
ability to detect them at larger distances. In the case considered, version-1 QR codes with just
21x21 black-and-white cells and a type L (i.e. low-level) Reed-Solomon error correction coding

8 http://optitrack.com/products/prime-13/
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(ECC) are adopted. All QR codes were generated by an online tool® according to the ISO/IEC
Standard 18004:2006 and were printed on regular A4 paper sheets with a resolution of 600 dpi.

Yy
A

&

QR code %@:‘@ @ ©

Xy

Figure 26: QR code detection system based on a front camera. QR codes are deployed over a regular
triangular grid.

As a rule of thumb, QR code size should be one order of magnitude smaller than the scanning
range. Also, their size should be proportional to a data density factor given by the ratio between
the number of columns (or rows) of the chosen QR code type (i.e. 21 in the case considered) and
the number of columns (or rows) of a standard version-2 code (i.e. 25). Since the average
scanning range of the chosen camera is about 1.8 m, the QR code size was set equal to 15x15 cm.
QR code detection relies on the open-source Zbar!0 library. QR code landmark recognition is
instead implemented in C++ using the primitives of the OpenCV1!! library. Both applications run
on the Intel Nuc Mini-PC on board of the FriWalk.

In general, the QR code placement strategy strongly depends on the geometry of the chosen
environment. If no specific constraints exist, a reasonable approach is to deploy the QR codes
over a regular grid. In theory, only three periodic, monohedral and regular tiling patterns can be
designed over the plane, i.e. equilateral triangles, squares and hexagons. Among them, the
triangular one is reasonably easy to deploy. Moreover, an optimal placement strategy has been
found in this case [63]. Such a strategy is described in Section 5.2.

Suppose that at time kT agent a detects QR code q. Consider that in general a#i since not
necessarily all FriWalks detect a QRcode at any time. With reference to Figure 26, let Axg be

and, Ay,?the measured distances between the camera and the detected QR code in the camera
frame. Also, let A7 be the measured angle difference between the camera optical axis and 6.

The values of such quantities can be measured using standard image processing algorithms, e.g.
based on homography [64]. If the points of the landmark to detect are coplanar (like in the case
of the QR codes) and if the dimensions of such codes are known a-priori, the homography-based

? http://goqr.me/
' http://zbar.sourceforge.net/
" http://opencv.org/
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techniques ensure a robust estimation of Axg, Ayg and A8 regardless of the actual position and
orientation of the camera. Moreover, once such data are available the absolute position and
heading of the FriWalk a can be determined by using the following output model, i.e.

(xqg — xi¢) cos O + (Y — yir) sin g
yi = h%(sy) = |—(xq — x¢) sin O +(yq — yi) cos 6y (5.3)
0, — OF

If y? is measured, then (5.3) can be rewritten as 2 = h%(sy) + {7, where random vector (@
models measurement uncertainty .

RGB-D camera: The RGB-D camera installed in front of a FriWalk to detect other agents in the
environment and to estimate their relative position is an ASUS Xtion Pro 3D system. As soon as
another FriWalk b enters into the field of view (FoV) of the RGB-D camera (with a reading range
of about 3.5 m), the embedded image processing algorithm first detects the new agent and then
it computes the x-y position offsets Ax® and Ayab between agent b and the principal point of
the camera on FriWalk a, as shown in Figure 27. As a result, the relative measurement model
can be defined as follows, i.e.

(g — x{) cos OF + (yi — y@) sin 6

yb = pb(s,) = (5.4)

—(x2 — x%) sin 62 +(y2 — y) cos B2

Similarly to (5.3), if y2? is measured, then (5.4) can be rewritten as % = h%(s,) + {*?, where
random vector (2’ models measurement uncertainty .

Yy
A o=
L=
A
\
Z X,
@ w > w

Figure 27: Position offset measurements between FriWalks a and b. Such measurements are performed
with an ASUS Xtion Pro 3D system and are essential to perform collaborative localisation.

5.1.2 Cooperative Localisation Algorithm

Consider a system consisting of N independent FriWalks each one described by the process
model (5.1) and by two intermittent measurement models, i.e. based on (5.3) and (5.4)
depending on whether a QR code or another agent are detected at time kT, respectively. Using
such models, a centralized EKF with intermittent observation can be easily defined. However, a
centralized cooperative localisation approach requires a central master device receiving the
sensor data from all agents, computing the location of each FriWalk and sending back the
estimated results to all agents. Unfortunately, this implementation is quite impractical and
hardly scalable. So implementing a distributed version of this algorithm is of primary
importance.
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After a thorough mathematical analysis, we reached the conclusion that this operation is
possible but requires a complex formulation. A major and sneaky issue which arises in a
possible distributed implementation and that may greatly influence estimator accuracy is the
non-negligible effect of the cross-covariance between the estimated states of any pair of agents
which perform some measurement at time kTs. This problem does not exist in a centralized EKF,
since the filter inherently takes into account the cross covariance of the states of different
agents. To preserve such a consistency for the EKF implementation and distribute the
computation of the collaborative localisation algorithm among the set of agents, [62] proposes
to track the predicted values of the cross covariance matrices between the agents i and j in each
agent i and j separately, and then update their values in one shot as soon as i measure the
relative position to j or vice versa, namely as soon as one detects the other. This is mainly
related to the way in which the cross covariance matrices are predicted. To clarify this point, let
us consider the covariance matrix evolution of agent i. In this case, the predicted value is
computed using its dynamic only. When the cross covariance between the agents i and j is
considered, its predicted value is instead computed as using both the dynamic evolutions of the
agents i and j. The interesting thing is that the dynamic of the i—th agent accumulates all on one
side, while the dynamic of the j—th agent on the other. Hence, there is no cross products
between the different dynamics and, hence, each agent can predict its own side of the cross
covariance independently and perform the merge only when needed, i.e. when one detects the
other. This way, the communication bandwidth is allocated only if strictly needed.

The basic steps of the algorithm are still basically two, i.e. prediction and update, and are
summarized below:
* Prediction step
At every sample time kT, each agent i=1,..,.N predicts its own state as well as the
corresponding covariance matrix as follows, i.e.

Sick1 = f (3, A®))

Pity = FiPLFL +GLOLGE (55)
where F} is the Jacobian of f{*) as defined in (5.1) with respect to the state variables of
agent i at time kT, Gy, is the Jacobian of f{-) with respect to the input quantities (namely
the encoder increments), P} is the state covariance matrix of the ith agent and Q}. is the

diagonal covariance matrix of input data, since the sensor data of left and right wheels
can be reasonably assumed to be uncorrelated.

In addition, agent i computes also the state transition matrix
pi o, =Fwl with@w =1 (5.6)
This matrix is needed in the following update step any time a measurement is

performed.

e Update step
In the update step three cases may occur on each agent: 1) a QR code is detected; 2)
another agent is detected; 3) no measurements are performed.
1. Ifanagenta detects a QR code, by using (5.3) it follows that

Zke1 = Vir1 — ha(§1?3:1
MI[<1+1 = HI?+1Pk+1Hk+1 + Rk+1 (5.7)

N = (P ™ k+1Hk+1
where H{is the Jacobian of h® () in (5.3) with respect to the state variables of agent
a and computed at $2*, while Rf,, is the covariance matrix of the camera-based
measurements of position and heading obtained from QR codes. Once the results of

(5.7) are ready, agent a broadcasts to all the other agents the following data, i.e.
(a, zk+1,Mk+1,Fk+1,lI’k+1 Hk+1 ) Each agentl 1,...,N first computes N-1 matrices

I‘k+1 HL lyk+1 k1 forl—{l - N}\{a} (5.8)
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