Figure 11 The twelve subjects of the MHAD dataset.

2.4.1.2 Dataset & evaluation metrics

The comparative evaluation and comparison of the three human pose estimation/tracking
methods was based on the Berkeley Multimodal Human Action Database (MHAD) [51]. This
dataset features 12 human subjects (see Figure 11). From this figure it can be verified that the
MHAD data set involves subjects of considerable variability with respect to age, size and body
types. This is also shown quantitatively in Table, columns (G), which provide the lengths of body
parts for all the subjects.

The subjects perform 11 different activities (01-jumping, 02-jumping jacks, 03-bending, 04-
punching, 05-waving two hands, 06-waving one hand, 07-clapping, 08-throwing, 09-sit
down/stand up, 10-sit down and 11-stand up). In each sequence, each activity is repeated
several times. The activities are recorded with a multi-camera setup consisting of several
conventional cameras as well as by two extrinsically calibrated Kinect sensors. In all
experiments reported in this paper, the methods employ the RGBD feeds (both of them for the
HYBRID method and the same, single feed for the FHBT and OpenNI methods). The resulting
tracking results are compared against the ground truth resulting from the motion capture data.

To quantify the accuracy in body pose estimation, we adopt the metric used in [52]. More
specifically, the Euclidean distance between a set of corresponding 3D points (skeleton joints) in
the ground truth and in the estimated body model is measured. Each such point (four per leg,
three per arm and one for the head) is marked with a red cross in Figure 10. The average of all
these distances over all the frames of the sequence constitutes the resulting error estimate A.

Another metric reports the percentage A(t) of these distances that are within some predefined
threshold t for a certain sequence. We will refer to this metric as the accuracy in human body
pose estimation. For example, an accuracy of A(10) = 70% for a sequence means that in the
frames of that sequence, 70% of the joints have been estimated within 10cm from the ground
truth.
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Subject S01 S02 S03 S04 S05 S06
M etric G|O|F |[GJO[F |G Jo]|]F(|[GgJOJFGJOJFIJG]J]o]F
UBL (HI) 26 |19 |22 [[30 |21 [ 24 [[33 [ 21 [23 |[29 |20 [ 22 [[ 32 [22 [ 23 [[28 | 20 | 24
LBL (1) 15 (19 |22 || 17 [ 21 |24 || 18 |21 |23 || 17 |20 |22 || 19 |22 |23 || 17 | 20 | 24
SND (CH,CiH) [ 19 |15 |17 |[ 19 |15 |17 |[ 17 |14 |17 || 15 |15 |17 || 17 | 16 |17 || 19 | 14 | 17
HND (GH) 20 [ 25 | 23 || 20 |25 | 23 || 20 | 25 |23 || 20 |21 |21 || 20 | 26 | 26 || 20 | 20 | 22
LHD (FJ,Fi) 10|9 |1012|9|101w0]|8 |10 9|9 |10 9|9 1] 9]s]|10
BAL (BC,BiCi) | 24 |25 |28 || 28 |27 |31 | 31 |28 [33 |24 |23 |25 | 26 |28 |33 | 26 | 26 | 30
FAL (AB,ABf) | 23 |26 |21 || 25 |31 |29 || 26 |32 |29 || 24 | 25 |23 |/ 25 |31 |28 || 24 | 27 | 25
BLL (EF,EiFi) | 36 |41 |39 || 43 |47 |41 || 44 |47 |41 |37 |39 |39 | 42 |45 |40 | 42 | 44 | 42
FLL (DE,DiEM) | 42 |37 |39 || 48 |42 | 41 || 47 | 43 |41 || 41 |35 |40 | 45 | 42 |40 || 45 | 41 | 41
(a)

Subject S07 S08 S09 S10 S11 S12

M etric GJOJF[GJoJF[GJo[F[GJo[F[GJoJF]|]GJOTF
UBL (HI) 25 [ 20 |21 |[30 [ 20 |24 [[ 27 [ 20 [ 21 [[27 [ 21 [ 23 [ 28 [ 20 [ 23 [[ 24 | 20 | 23
LBL (1) 15 |20 |21 || 18 [ 20 | 23 || 15 |20 |21 |[ 16 |21 |23 || 16 |20 |23 || 21 | 20 | 23
SND (CH,CiH) [ 17 |17 |17 || 18 |15 |16 || 15 |13 |17 || 17 |14 |17 || 17 |15 |17 || 18 | 14 | 17
HND (GH) 20 {20 |21 || 20 |21 |20 || 20 |17 |23 || 20 |24 |21 || 20 | 25 |22 || 20 | 24 | 22
LHD (FJ,Fi) 8|7 |10 9|9 |10 8|7 |08 |8 |0 8]|9|10]9]s8]10
BAL (BC,BiCi) |22 |25 |26 || 24 |26 |28 || 23 |22 |24 |27 |25 |30 | 26 |27 |31 25 | 25 | 27
FAL (AB,ABi) || 22 |24 |23 || 24 |26 |24 || 23 |27 |22 || 24 |29 | 24 || 24 |28 | 24 || 22 | 27 | 24
BLL (EF,EiFf) | 35|39 |38 {39 |40 |41 | 35|42 |38 |41 |43 |40 | 41 |44 |41 | 38 |43 |41
FLL (DE,DiEf) | 41 |35 |37 || 43 |39 |41 || 41 |37 |40 || 43 |40 |40 | 44 | 41 |41 | 41 | 39 | 41

(b)

Table 9: Body part lengths (in cm) for the human subjects of the MHAD dataset, (a) subjects 01-06, (b)
subjects 07-12. Columns (G) are the manually measured, ground truth values, columns (O) the one estimated
by the OpenNI method, and columns (F) are the ones estimated by the FHBT method. The parenthesis next to

the name of each body part to the corresponding body segment(s) in Figure 9.

2.4.1.3 Comparative evaluation

Several experiments were carried out to assess quantitatively the accuracy and the performance
of the evaluated human articulation tracking methods.

All-subjects-one-action experiment: A first experiment aimed at evaluating the performance
of the methods across different human subjects. All twelve sequences showing the twelve
different subjects performing the same activity (activity 04, boxing) were considered. It has to
be noted that the FHBT method estimates only a subset of the joints, depending on whether the
method's confidence on them exceeds an internally set threshold. Figure 12 (c) shows the
percentage of joints that were estimated by each method. For the OpenNI and HYBRID methods
this is always 100% while for the FHBT method this is 75% on average, across different
subjects. In a subsequent measurement, we evaluated the error A and the accuracy A(10cm)
(Figure 12 (d), (e), respectively) for all methods, but only over the joints and the frames for
which the FHBT method provided some estimation. It can be verified that when error and
accuracy is measured over these joints, the performance of the OpenNI and the HYBRID method
increases. This indicates that the confidence that FHBT estimates for the joints is trustworthy.
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Figure 12: Quantitative evaluation of the method applied to 12 subjects performing the same action
(boxing). (top-left) Error A and variances over all frames and joints. (top-middle) Accuracy A(10cm) over all
frames and joints. (top-right) Percentage of joints for which a method provided an estimation. (bottom-left),
(bottom-right): Error A and accuracy A(10cm) over the joints for which FHBT provided an estimation. FHBT:

green bars, HYBRID: red bars, OpenNI: blue bars.
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Figure13: Quantitative evaluation of the method applied to 11 actions performed by the same subject (s09).
(top-left) Error A and variances over all frames and joints. (top-middle) Accuracy A(10cm) over all frames
and joints. (top-right) Percentage of joints for which a method provided an estimation. (bottom-left), (bottom-
right): Error A and accuracy A(10cm) over the joints for which FHBT provided an estimation. FHBT: green
bars, HYBRID: red bars, OpenNI: blue bars.

All-actions-one-subject experiment: In a second experiment, the goal was to assess the
proposed method with respect to different activities. For that purpose, the evaluation was
performed on image sequences showing a single subject performing the eleven different
activities. Figure 13 illustrates the obtained results in a way analogous to that of Figure 12.
Again, HYBRID outperforms the rest of the methods with respect to the mean error A and
accuracy, while the rest two methods perform comparably. It should also be noted that for
actions like bending (action 03) and sit-down/stand-up (action 09) that exhibit considerable

self- and body-object occlusions, the FHBT method estimates the least number of joints (see
Figure 13 (c)).
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Aggregated results: Table 10 summarizes the performed experiments by providing A, A(10)
numerical values for the cases of all-subjects-one-action and all-actions-one-subject
experiments, as well as for the union of the corresponding datasets. A number of interesting
conclusions can be drawn: (a) Overall, the HYBRID method is the one that results in the lowest
errors and error variances and the highest accuracy, (b) FHBT and OpenNI perform comparably,
(c) FHBT exhibits minimum performance variability between the two experiments with respect
to A and its standard deviation, while OpenNI exhibits minimum performance variability with
respect to A(10) and, (d) HYBRID has the maximum variability in all metrics. In the results of
Figure 12 and Figure 13 the accuracy A(t) has been computed for t=10cm. While this choice of t
is compatible with the requirements of many applications, it is interesting to know how the
accuracy of a certain method varies as a function of t. Figure 14 presents this information. For
the three evaluated methods, we measure their accuracy for various values t in the range [0..20]
cm. The top row of plots shows these results over the joints that the FHBT method estimated,
while the bottom row shows the same results over all the joints. It can be verified that the
HYBRID method is consistently more accurate compared to the other two, regardless of t. FHBT
and OpenNI perform comparably. Moreover, the plots show for which error tolerances each
method becomes preferable.

Estimation of body sizes: The HYBRID method relies on its discriminative part (which is the
OpenNI method) in order to initialize the tracking process and to set the proper human body
model parameters. The FHBT method has its own mechanism to provide an estimation of these
parameters. Table 9: shows, for each subject, the ground truth information (columns (G)) as
well as the ones estimated by the OpenNI (columns (0)) and FHBT (columns (F)) methods. It can
be verified that the FHBT method is slightly more accurate in estimating body shape parameters
than OpenNI. In particular, for each method, we computed the mean error (among subjects) in
the estimation of each body part length. Then, we estimated the mean and the standard
deviation of these errors for all body parts. The results show that the mean error in the
estimation of the body parts for the OpenNI method is 3.44cm with a standard deviation of
0.68cm, while for the FHBT method we obtain a mean error of 2.86cm with a standard deviation
of 0.71cm. The analysis also shows that the most inaccurate measurements are obtained for the
human torso-related parts, while the lengths of the limb parts (arms, legs) are estimated more
accurately.

D ataset S09 A 04 A ggregate
M ethod Mean [ Std. [ A(10) (%) Mean [ Sud.  [A[10) (%) Mean [ St [A(10) (%)
FHBT 58.0/58.0 | 40.7/40.7 89.2/89.2 [ 58.1/58.1 | 41.3/413 85.5/85.5 || 57.6/57.6 | 41.0/41.0 87.5/81.5

OpenN| 69.4/52.8 | 63.1/50.1 80.7/89.4 67.6/58.7 | 69.5/58.9 80.1/84.9 67.9/55.1 | 66.3/54.2 80.6/87.4
HYBRID | 36.1/32.3 | 20.3/19.0 98.5/98.9 42.6/40.5 | 34.7/32.7 93.5/94.9 39.7/36.7 | 28.3/26.5 95.8/96.7

Table 10: Comparison of FHBT, HYBRID and OpenNI methods in all datasets. Mean A and std. of A are
measured in mm. The two numbers in each slot of the matrix refer to the quantity measured over all
joints/the quantity measured over the joints computed by FHBT.
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Figure 14: The accuracy A(t) of the evaluated methods as a function of t in the range [0..20]cm, for all
experiments. Left column: all-subjects-one-action, middle column: all-actions-one-subject, right column: the
union of the two datasets. Top row: results for the joints estimated by FHBT. Bottom row: results for the
joints that each individual method estimates.

2.4.1.4 FHBT Limitations

A series of experiments performed on a ground-truth-annotated data set demonstrated
quantitatively and qualitatively the performance of the evaluated methods. The results show
that in situations where small error and high accuracy is more important that the burden and
the overhead of using a second RGBD sensor, the HYBRID method is the preferred one.
Interestingly, the HYBRID method is slightly less accurate than other purely generative methods
like pPSO [46] that are aware of an accurate human body model. Still, the fact that HYBRID is
fully automatic, is a significant advantage that, depending on application, might be more
important than its lacking accuracy.

Another result is that FHBT and OpenNI perform comparably. FHBT has some additional
practical advantages that make it an attractive alternative for estimating human 3D pose. For
example, it initializes instantly (in a single frame), can cope with partially visible human bodies
and operates with a moving camera, even in jerky motion. It should be stressed that the
employed MHAD dataset does not showcase such difficult situations which are, nevertheless,
abundant in several real-life scenarios? including the ones considered in the context of the
ACANTO project. While the FHBT handles self-occlusions and camera motion well, the method
has its limitations when trying to track a person that is very close to the camera and thus not
fully visible or when there are severe occlusions with the person partially hidden behind objects
(i.e. furniture). The main area of operation for the ACANTO FriWalk is the indoors environment
of the hospital as well as the care facility for the elderly. The walker must be able to function in
the limited space of the patient’s room and around the typical furniture and obstacles found in
the aforementioned type of environments. More specifically the, FriWalk assisted, exercises and
tests (described in detail in chapter 3) will be executed in patient rooms with very strict space
limitations. These tests and exercises are problematic cases for the baseline body tracker which
was designed to work in more open spaces.

7 See also https://youtu.be/ZKIC9PA1IDg
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2.4.1.5 Clinical datasets

In order to test the FriWalk body tracking modules in realistic settings, a hospital environment
is necessary. FORTH has a hospital room simulation and test area in the AMI (Ambient
Intelligence) facility in Heraklion, Crete. With the support and information provided by the
physicians in Getafe, the hospital room simulation was restricted to the expected dimensions of
the patients’ rooms in Getafe. Similar lighting conditions as well as the furniture (i.e. hospital
bed, chairs) were used. The datasets were acquired with five different subjects, two female and
three male. Two different exercises were performed by each test subject: (a) the “Chair stand
test” with the person using a chair in the simulation room and (b) the “Isometric/Isotonic
exercise” with the person sitting on the clinical-bed in the simulation room. These tests are
presented in detail in sections 3.1.3 and 3.1.4 respectively. For each exercise each subject was
asked to execute it multiple times in “successful” and “failed” scenarios. The datasets acquired in
the simulation facility were used to test and tune the body tracking modules (Figure 15, Figure
16 and Figure 17).

2.4.1.6 Task-specific body tracking

The environment and application constraints gave rise to the need for specialized algorithms
and adaptations for the body tracker modules of the FriWalk. First, the restrictions in the walker
placement (and, as a result, of the camera placement) create complete occlusions in the lower
limbs. This is an important issue in the ACANTO setup were accurate position of the legs is
required during the clinical tests and exercises. Secondly, the clutter in the environment (bed,
sheets, furniture) introduces uncertainties that eventually lead the original FHBT module to
false or inaccurate detections. Finally, the joint-tracking accuracy required in the ACANTO
clinical tests brings the adaptive (but still generic) body model used by the FHBT
implementation to its limits. FORTH is currently in the final development and testing stages of a
number of alternative methodologies that work around and when possible leverage the
environmental restrictions to enable robust body tracking.

User-specific model tracking: The approach is using a model that is tailored to the specific
user. Initially the user is scanned using an RGBD sensor. The captured point clouds are fused
into a single mesh using [47]. The 3D mesh is then being rigged with a properly adjusted
skeleton using [48]. The scanned model is used with a model based optimization pipeline which
is building upon the success of FORTH’s hand tracking framework (Figure 15).

Advantages of this model based technique is (a) the ability to focus on optimizing the accuracy
for specific joints and (b) a higher accuracy since the model matches the observed human.
Results of this optimization pipeline is shown on Figure 16 alongside results by the FHBT for the
same frames.

Figure 15: Left: Sample result using a user-specific model, tracking is performed with an adaptation of
FORTH’s model based tracking framework. Right: evaluated hypotheses (body configurations) generated
for the frame on the left using particle swarm optimization, the correct hypothesis is on the top left.
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Figure 16: Preliminary tracking results using the body tracker with the personalized model. A walking
sequence and a sequence with a person performing an isometric exercise are shown. The first and third
columns show the user-specific model results while the second and forth columns show the FHBT result on
the same frame. For the FHBT frames, the side-view of the tracked skeleton is shown super-imposed on the
bottom right.

The developed generative method can be used in conjunction with a deep learning approach
such as [49] which can provide strong initialization and re-initialization priors. The user-
specific model based approach can provide improved accuracy and enable continuous patient
tracking even when the lower limps are completely occluded for a number of frames.

HMF Body Tracking: The previously mentioned human pose tracking based on a personalized
human model capitalizes on Particle Swarm Optimization for fitting the human model into the
available observations. This optimization framework shows promising results, however has
two important drawbacks (a) it maintains and propagates a single hypothesis regarding the
configuration of the human body, thus, if tracking fails, it cannot be recovered (b) while there is
considerable parallelism at the particles level, all particles generations need to be executed
serially. To mitigate thee issues an alternative optimization technique based on the hierarchical
particle filter was implemented in the “HMF Body Tracking” module.

This approach considers a generative, particle filter (PF) applied to the body tracking problem.
Similar to the “User-specific tracking” method, the method relies on a 3D model of the human
body. The body has several degrees of freedom that encode its 3D position and orientation as
well as the joint angles that are relevant to each tracking scenario. Successful tracking boils
down to estimating the state of the model at each frame given the RGB-D observations. A
hierarchical particle filter (HMF) [1, 3] that can handle high dimensional state spaces is
employed for the task. To ensure robust tracking for persons with different somatometric
measurements a model shape adaptation procedure [28] is performed in the beginning of each
session. The adaptation procedure adapts the shape of the generic 3d model that we use for
initialization to the actual shape of the person that is being tracked.

The HMF tracker follows a hierarchical strategy to estimate the target’s state. A set of auxiliary
models that lie in lower dimensional spaces and track parts of the body are used. At each frame
these models are updated first and the information from them acts as prior for the main model
that is the full body pose. This way the search in the high dimensional space of the main model
is narrowed significantly making the method faster and suitable for real time applications. As a
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PF variant, HMF uses a set of hypotheses to approximate the posterior state distribution given
the observations. To measure the likelihood of each hypothesis we use a combined objective
function that computes the weighted average of the following two terms: (i) the pixel per pixel
discrepancy between a rendered pose and RGB-D observation. (ii) The distance between the
model joint positions and the joint positions as detected by the bottom-up FHBT detector. Using
these two terms for the calculation of the likelihood results in a tracker with increased
robustness that outperforms trackers relying on one modality.

We tested the described tracker on standard datasets as well as on our dataset that contains
sequences that correspond to the ACANTO exercise scenarios (see Figure 17). The preliminary
qualitative results show that the approach performs well in terms of tracking accuracy and
speed (10-30fps depending on the number of particles).

Figure 17: Preliminary results of HMF body tracking of a subject performing the leg extension isometric
exercise.

2.5 Mechanical Sensors for User Detection

Since the FriWalk is capable of autonomous motion, one of the main risks that is potentially
harmful for the user is related to a severe software failure, which could make the robot move
unpredictably. The FriWalk could in this case leave the user on its own alone, running over the
user or causing her/him to lose her/his balance. In order to minimize/eliminate the identified
risks and preserve the user safety, we installed two mechanical devices:

* A safety lanyard which connects the user’s chest with the robot. If the distance between
the user and the robot exceeds the lanyard length, than the power supply is
immediately and automatically detached;

* A safety switch mounted in the two bars of the seat. In this way, if the FriWalk goes
backwards, as soon as the seat comes into contact with the user legs the power supply is
immediately and automatically disconnected.

We point out that both mechanisms operate directly on the power switches; therefore they do
not need any software signal to be activated. Nonetheless, the use of correct-by-construction
programming mechanisms, of well tested versions of the Linux Kernel and of well known
computing devices (adopted and supported by a large community) mitigates the risk of a severe
software failure.

To address a similar problem, i.e. the user and the FriWalk should remain in physical contact
during standard navigation tasks, the rollator grips are equipped with a pair of resistive contact
sensors, embedded inside the handles. In such a way not only the walker is prevented from
moving on its own unless required by the specific application, e.g. for some of the clinical tests
foreseen in the next Chapter, but it can also fulfil specific functional purposes. For instance,
some clinical exercises require the user to hold the grips to show that her/his attention is
focused on the exercise. In addition, in some other exercises the user is explicitly not allowed to
use the handles, otherwise the exercise/physical performance test will be rated as a fail.

The adopted resistive sensor, precisely the Force Sensitive Resistor L = 600 mm developed by
FSR, generates analogic outputs that can be acquired by the embedded computing platform on
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board the FriWalk. To allocate the sensor, the original rubber handles have been cut and then
fixed back.

2.6 Clinical Data Explorer

For investigation purposes a graphical user interface (“Clinical Data Explorer”) has been
developed that allows for interactive visualization of all the measured user specific quantities.
At the moment only the acquired data is shown whereas in the future this tool could also be
extended to calculated derived measures like e.g. velocity and acceleration parameters for gait
in form of various 2D and 3D plots.

The tool currently consists of predefined views for user state related modalities (Figure 18 (a)
shows the view on gait aiming to provide similar information like a gait walkway) as well allows
for a so called “custom view” that allows to arrange the user data freely across individual
modalities (Figure 18 (b)).
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Figure 18: Clinical Data Explorer.
(a) Gait Analyzer View. (b) Custom View.
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Chapter 3
Activity Analysis in the Clinical Scenario

For the clinical environment in a workshop held at the University Hospital of Getafe the project
consortium identified different categories of activities that benefit from automated activity
analysis:

e Diagnostic activities (SPPB test)
* Orthogeriatric exercises
* Training exercises

The rationale behind automation is a higher degree of quantification and hence repeatability as
opposed to currently manual measurements taken, as well as the opportunity to execute these
tests without the presence of highly qualified medical professionals up to even unsupervised
execution of certain exercises.

For that reason keeping the process simple and safe for the older adult is of utmost importance,
so the project team did a careful consideration of safety mechanisms e.g. a chord with a
magnetic switch is attached to the patient dress as described in 2.5. Should the robot start
moving forward, the switch is stripped off and the robot stops. Hence the project team did
consider trade-offs between technical feasibility of features of our robotic device (like
autonomous movement) and potential risks introduced by it.

In addition since FriWalk is a robotic device it can be used also for people that do not need the
support of a walker, in the sense that the FrilWalk is just acting as a mobile measurement device,
that the older adult has to follow or that follows the older adult autonomously. This also
includes automatic placement (on the longer run) of the walker for certain stationary tests or at
least (visual) guidance for aiding a caregiver in correctly placing the walker.

3.1 SPPB Test

The short physical performance battery (SPPB) is a group of measures that combines the results
of the gait speed, chair stand and balance tests [1]. [t has been used as a predictive tool for
possible disability and can aid in the monitoring of function in older people. The scores range
from 0 (worst performance) to 12 (best performance). The SPPB has been shown to have
predictive validity showing a gradient of risk for mortality, nursing home admission, and
disability.

It consists of a standardized sequence of three individual tests as can be seen from Figure 19.

The first test (“Balance Tests”) rates if the older adult is able to keep certain stances for a given
period of time without losing the balance. In our case of using a smart walker, in order to
successfully complete the test the person is not allowed to use the handles to keep balance,
however the presence of the handles offers additional safety just in case. Technically speaking
we need to rate the presence of specific stances derived from our gait analysis system.

The second test (“Gait Speed Test”) measures the time required to walk 4 meters at a normal
place, and it is recommended to use the best time out of two trials. While this test sounds rather
simple, user-centric sensing allows us to gather additional information during the short
walk and yields quantitative measurements not been available up to now with the common
practice of taking measurements with a stopwatch.

The last test (“Chair Stand Test”) measures the time required to perform five rises from a chair
to an upright position as fast as possible without the use of the arms. With respect to user-

31



ACANTO

centric sensing the test is based on automatic human body model analysis and requires a
clever placement of the robotic walker with respect to the older adult performing the test, in
order to ease the detection process.

Further details on the individual tests will be given in the subsequent chapters.

1. Balance Tests
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3. Chair Stand Test

Pre-test
Participants fold their ams across their chest |....... unable Stop (0 pt)
and try to stand up once from a chair

able

£11.19 sec 4 pt
11.20-13.69 sec 3 pt
13.70-16.69 sec 2 pt
=16.7 sec 1pt
>60 sec or unable 0 pt

5 repeats
Measures the time required to perform five rises
from a chair to an upright position as fast as
possible without the use of the arms

Figure 19: SPPB Test - Standardized test procedure and associated rating system.

3.1.1 Balance Test

The sequence of “Balance Tests” rates if the older adult is able to keep certain stances for a
given period of time without losing the balance. Utilizing the messages from the intermediate
level representation test sequences like the balance test can very easily be scripted and this
lightweight application logic eases the subsequent integration into a graphical user interface.
Figure 20 shows a prototype of the balance test for testing and demonstration purposes. The
GUI is not yet fully optimized for potential end users. Harmonization in visualization across all
individual activity analysis modules in the clinical scenario will take place later.

Please note that the tandem stand can usually only be detected by the circumstance that one
foot is visible, so foot colouring is missing for left and right foot respectively.
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Figure 20: Progression of SPPB test.
Timer bars shows the progress of each test and the performance is automatically rated according to the
point system given in Figure 19. (a) Side-by-Side Test. (b) Semi-Tandem Stand. (c) Tandem Stand.

3.1.2 Gait Speed

The user gait speed can be computed directly from the reconstructed FriWalk position coming
from the localization algorithm, described in Chapter 5. As reported there, the localization
algorithm is based on a coherent fusion between dead-reckoning data (i.e. encoders and, in case,
visual odometry or IMU data), absolute position data (i.e. from QR landmarks or, in case, cloud
positioning systems, such as surveillance cameras) and relative position measures (i.e.
collaborative localization). In this setting, to recover a stable and accurate velocity measure two
problems should be tackled. First, the user location tracking is noisy; hence the data should be
properly filtered. Second, when the position is updated by an absolute reference, the estimated
location jumps due to the intermittent availability of such information (more on this in Chapter
5). Even though the collaborative localization approach mitigates this detrimental effect, the
problem remains (see Figure 27 in Chapter 5).

To deal with both the aforementioned negative aspects, the gait speed can be computed with a
low pass windowed mean filter applied on the estimated user positions, in which the window
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length is 250 ms, corresponding to about 60 consecutive position estimates. The length of the
filter has been computed to filter out at most both the noise and the jumps related to the
absolute updates. Notice that 250 ms are a sufficiently small amount of time to assume that the
velocity of the user is almost constant, unless it stops on the spot. To detect such a sudden stop
situation, which will generate a slow fading of the measured velocity of length 250 ms due to the
filter window, we make use of the encoders, in a way that resembles the Zero velocity Update
(ZUP) used for location tracking with foot mounted accelerometers [80]: when the encoders
stop, we reset the gait speed to zero. As a final remark, we have to point out that the use of a
smoother to further reduce the effect of the jumps in the estimates can be adopted.

Nonetheless, since the gait velocity can be considered as an instantaneous measure, very much
similar to the tachometer of a standard ground vehicle, this quantity can be measured using
only encoder data captured on the 250 ms aforementioned window and then filtered. This
approach is simpler than the localization-based solution and relies on the fact, substantiated by
experimental evidence on the field, that the encoders noise is approximately white with zero
mean. This approach, currently adopted on the FriWalk, still partially makes use of the
localization algorithm by removing from the encoder data the drift terms estimated in the filter
(see Chapter 5). It is worthwhile that the velocity estimates can be further refined by the
angular velocity directly available from the rear motors driver, even if it is not yet implemented
at the moment of writing.

3.1.3 Chair stand Test

The chair stand test is part of the SPPB tests in Figure 19 The goal of this test is to measure the
frailty of the patient and give a measurement of the probability this patient has to suffer a fall
with a possible bone fracture in the near future. During the test the patient is asked to sit on a
chair and stand up again while having his or her arms crossed on the chest. The results of the
test are determined by the time it takes for the patient to perform each repetition.

The implementation of the test using the FriWalk, apart from automating the process, enables
the recording of the full body posture of the patient during the test. This information along with
the test scores is made available to the physician for further analysis.

The protocol for the execution of the test was created such that it minimizes the risk for the
patient and allows non-medical personnel to provide assistance and function as caregivers. The
test is split into phases: instructions phase, positioning, pre-test phase and test phase.

On initiation the test starts with the “instructions phase”. The patient puts her/his hands on the
FriWalk grips and receives audible and visual instructions. The instructions explain the test
requirements. Once the patient is ready the test enters the second phase. Then the patient is
asked to sit on a chair. In order to provide the person with support as he/she sits the walker is
firmly locked (brakes on).

Subsequently the walker is positioned in front of the person in a way that the full body of the
patient can be observed by the front-mounted RGB-D sensor. Once the walker is properly
positioned the pre-test phase starts. In this step the goal is to test if the patient is capable to
perform the actual test procedure. The system gives the audible command “STAND UP and SIT
DOWN PLEASE” to make sure that the patient is able to reach a full knee extension with arms
crossed. If the patient qualifies she/he is informed that the test is ready to start.

The system says “SIT DOWN” and then “GO”. If, during the test, the patient moves his/her arms
away from the correct pose (crossed on the chest) or loses balance, he/she fails and the test
stops. If the patient fails to complete the requested number of repetitions in 1 minute the test
fails. Each time a successful sit-stand repetition is completed the system emits and audible “tick”
giving feedback to the patient and the assistant. The system records the time that the patient
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spends carrying out the 5 repetitions (using the scoring system), or if the patient is unable to do
the exercise. The walker autonomously detects the end of the test. Finally the walker is returned
in the original position to help the patient to stand-up.

3.1.4 Isometric/Isotonic Exercise

The goal of the isometric/isotonic exercise is to strengthen the leg muscles of the patient. This
type of exercise is typically prescribed by physicians for patients that live in nursing homes or
are recovering in a clinic. The patient is expected to perform a number of knee-bending
repetitions while seated. Each repetition is timed. The patient is required to hold the leg
extended with the knee at above a minimum angle for a number of seconds.

With FriWalk the exercise is automated enabling the parallel collection of body posture
information. The walker is tasked to remind the patient with audio and visual alerts that he
must perform the exercise prescribed by the physician and invites him/her to complete it in
pre-set intervals. As soon as the patient accepts the invitation, the caregiver moves the walker
to the optimal position for the measurement. To achieve that, the system guides the caregiver to
the proper position with on-screen visual indicators.

The isometric/isotonic exercise is initiated and the FriWalk gives audible and written
instructions to the patient. The patient is instructed to lift and hold each leg up a pre-set number
of times alternating left and right. During each repetition the patient is required to hold the left
up for a given number of seconds.

The display shows two bars with the number of lifts detected, the bars correspond to the left
and right leg. During the exercise the counter goes down with each successful repetition
indicating the progress to the patient. The counter is not decremented if the patient moves the
wrong leg or if the minimum desirable knee extension is not reached. When the knee reaches
the right extension a “tick” sound is emitted. A timer is started for the period the patient needs
to hold his/her leg up. After the “hold” time has passed a new tick is emitted. If the patient does
not succeed in holding the position long enough, the system records the partial failure and the
counter is decremented.

During the exercise the FriWalk is recording the posture of the patient and the angle of the knee
for each leg. This information provided by FORTH’s body tracking module is stored and made
available to the physician for later analysis. The body tracking module is also responsible for
informing the user interface about the knee angles in real time as the exercise progresses.

Once the number of repetitions is reached the system informs both the patient and the caregiver
that the exercise is completed and the FriWalk returns to normal operation mode.
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Chapter 4
User State Modeling (USM)

4.1 Introduction

The purpose of the User State Model (USM) is to condense and evaluate the emerging plurality
of data presented in Chapter 2 in order to deliver semantically meaningful information that
allows for automatic activity evaluation and measuring the impact of activities on the user’s well
being. We introduce a hierarchical aggregation of sensory information and present the
underlying mathematical models for rating the user’s well-being on the physiological and
emotion level as well as express the level of vigilance, an activity index and a stress level.

Section 4.2 is dedicated to the exact specification of the input quantities of the USM. In section
4.3, the general structure of the USM is presented: The main data flows are shown and a high-
level overview of the calculation types and steps are presented. Finally, section 4.4 focuses on
the precise description of the mathematical models of the USM (i.e. its sub-models) and the
interrelations between the individual quantities.

4.2 Inputs, Interfaces: External Specifications

The principle data interfaces are sketched in Figure 21, the exact specifications for the Fitbit
Charge HR wristband, the gait analysis, and the camera on the face can be found in

Table 11.

Multivariate
Sensors »
consistency

|
|

|

i Data pre- | Univariate

. processing consistency
|

Smart wrist i CSY _| consistency :
band T 71 check : l

5 5 . Interaction
raw RawData > cs, Consisten: ; )
E Pmce:si:le Data > ::l:ck et "_:_> ConS|Stency F—>
' Siemens CT Graz : ' check
Raw Data > CS:\’ Consistency T

Processible Data check

: Univ. Trento i :

Figure 21: A schematic overview of how the sensor data is handled before the calculation
of the User State Model (USM).
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Input (Camera)

Parameter Unit Range Frequency Comment

P Average: Pain Level - [0; 1] 1min Pain Level, averaged over 1min

maxP Maximum: Pain Level I:;?: value of all Pain Levels of

o SD: Pain Level Sta_ndard deviation of Pain Levels of
1min

HR Average: Heart Rate bpm [0; 200] 1min Heart Rate, averaged over 1min

maxHR Maximum: Heart Rate l:r?:]rl? value of all Heart Rates of

minHR Minimum: Heart Rate 1srrr‘11i?1”es value of all Heart Rates of

Our SD: Heart Rate Stand_ard deviation of Heart Rates
of 1min

emo Average: Emotional valence - [-1; 1] 1min I1Errrr11icr)]t|onal valence, averaged over

. . Standard deviation of Emotional

Oemo SD: Emotional valence .
valences of 1min

a Average: Arousal - [0; 1] 1min Arousal, averaged over 1min

o, SD: Arousal Sta_ndard deviation of Arousal of
1min

Yaw Average: Head Yaw ° [-90; 90] 1min

Ovaw SD: Head Yaw Averages and SDs as before. If it's

Tilt Average: Head Tilt ° [-90; 90]  1min possible, you may also hand me

) just the average SD of all three

Ot SD: Head Tilt head poses (instead of the single

Roll Average: Head Roll ° [-90;90]  1min three SDs).

ORoll SD: Head Roll

Parameter Unit Range Frequency Comment

Nisteps Number of steps - [0; 200] 1min Number of steps of 1min

SL Average: Stride Length m [0; 5] 1min Stride Length, averaged over 1min

s SD: Stride Length Stand_ard deviation of Stride Length
of 1min

GCT Average: Gait Cycle Time 5 [0; 60] 1min ?;:tnCycle Time, averaged over

o . Standard deviation of Gait Cycle

OceT SD: Gait Cycle Time Times of 1min

ST Average: Stance Time 5 [0; 60] 1min Stride Length, averaged over 1min

Osr SD: Stance Time Standard deviation of Stride Length

of 1min

Input (Fitbit Wristband)

Parameter Unit Range Frequency Comment
Nsteps Number of steps - [0; 200] 1min Number of steps of 1min
cal Active calories kcal [0; 4000] 1day Number of burned calories of 1day
HR Heart Rate bpm [0; 200] 1min Current HR, sent every minute
tsieep Time asleep min [0; 500] 1day Time asleep at night
tawake Time awake min [0; 400] 1day Time awake between sleep cycles
RHR Resting Heart Rate bpm [0; 120]  1day Heart rate right after wake up

Table 11: Collected input parameters for the User State Model (USM),
including their physical units, quantity ranges, and sending frequencies.
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4.3 General Structure

A sketch of the general data flow before and after the calculation of the USM output is presented
in Figure 22. It shows the data path starting from sensors including pre-processing and USM
calculation to sending the USM outputs.

Sensors Pre-Processment User State Model

‘Smart wrist
{%

Physical indication

2 = ==
— —
—> Emotional balance
Raw Sensor Pre-Processed User State
Data Sensor Data Outputs

Figure 22: A schematic overview of the data paths before and after calculation of the User State Model
(USM); the raw sensor data of the biometric measurements is pre-processed (time-aligned, converted into a
uniform data format and checked for consistency), further processed by the USM and sent to a general
communication platform

T

The high-level structure of the USM itself is depicted in Figure 23. “Vigilance”, “Activity index”,
and “Stress” are determined as levell outputs - they are mainly influenced by the sensor
measurements and considered hardware oriented or low-level information. “Physical
indication” and “Emotional balance” are defined as level2 outputs - they equally take both
sensory information and levell output into account (meta- or high-level information).

Level 1 Level 2
Vigilance

=
<>

Physical indication

PEPEERNp -

Activity index

ol B ] X
\ i 7 \ Emotional balance

Stress // E

X

Pre-Processed
Sensor Data

Figure 23: General model architecture of the User State Model (USM), which consists of two levels: the
quantities “Vigilance”, “Activity index”, and “Stress” (level 1 outputs) are classified according to their
calculation in close vicinity to the pre-processed sensor data; the quantities “Physical indication” and
“Emotional balance” (level 2 outputs) are calculated on a meta-level taking both sensor data and level1
outputs into account.
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Detailed descriptions of the calculations of each of the levell and level2 outputs are provided in
the following chapter.

4.4 Detailed Structure & Internal Specifications

4.4.1 Model deduction approach

For sake of simplicity, we assume linear approximations of all presented relationships. In future
versions of the USM, these relationships may easily be extended to quadratic, logarithmic or any
other suitable type of mathematical relationship.

The “range” of every input quantity consists of 4 numbers:

1) Absolute minimum: Below that number, the input is not recognized and not considered
in the calculation. Above that number, the impact if the input is either maximal or
minimal, depending on the slope of the function.

2) Linear minimum: At this value, the linear function for the impact applies.

3) Linear maximum: Up to this point, the linear function still applies.

4) Absolute maximum: Above that number, the input is not recognized and not considered
in the calculation. Below that number, the impact if the input is either maximal or
minimal, depending on the slope of the function.

See Figure 24 for a graphical representation of the sub-model generation.

Quantity Source Range . Weight

Fitbit/ Camera
on face

HR Hearl rate 0/50/ 180 /200 [/min] 20 %

Impact on Activity index

\

HR ((min]  AJ [
0

Impactpn Alf-]

180

0
50 0
200 2

0 50 100 150 200 250
Heart rate [/min)

Figure 24: Each quantity range is represented with 4 numbers which determine the linear impact function:
the absolute minimum, the linear minimum, the linear maximum, and the absolute maximum.

4.4.2 Activity Index (AI)

Motivation

Activity is strongly correlated to general health and thus should be greatly encouraged: e.g. it
prevents cardiovascular diseases [29] and correlates with lower numbers of obesity [30] and
general mortality [31]. Due to its key importance, we define the “Activity index” as a crucial field
of the ACANTO User State Model.

Inputs

Basing on steps, climbed floors and active versus non-active time, the Fitbit Charge HR gives an
estimation on actively burned calories per day. As we consider the numbers taken into
account as crucial, we weigh this quantity with an impact of 50%.
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The current heart rate delivers information on the patient’s activity in the very moment of
calculation. Although this quantity is measured redundantly (by the camera and the Charge HR),
we expect its availability and accuracy to be limited and thus assign a rather low impact of 20%.

Walking speed can be derived from the gait analysis and represents another proper means of
measuring a patient’s activity; its impact is set to 20%.

To ensure a broad (and thus robust) calculation of “Activity index”, the head movements -
measured by the camera on the face - are taken into account as well: the standard deviations of
all three spatial dimensions are combined and determine the Al by 10%.

Outputs

The “Activity index” is represented by a decimal number with 0 (not active) and 10 (very
active). The objective is to reach an Al of 10. Hyper-activity or other detrimental forms of
activity are not considered. The Al is calculated every minute.

Summary and calculation formula

Quantity Source Range Unit Weight
cal Actively burned Fitbit 0/0 /3000 / 4000 [kcal/day] 50 %
calories
| OYaw ~ Head pose: Camera on
Ot Standard deviations 0/0/5/7 [deq] 10 %
——— of Yaw, Tilt, Roll face
QRoll Y
Fitbit /
HR Heart rate Camera on 0/50/180/200 [/min] 20 %
face
Viwalk Walking speed Gaitanalysis 0/0/2/3 [m/s] 20 %

Table 12: Overview of input quantities for Activity index (Al); the quantities, their data source, validity ranges
(for their interpretation, see Figure 24), units and impacts for the Al are displayed.

AI = 0.0017 -cal +0.0667 (o, + 0y + 0 gy )+ 0.0154 - HR —0.7692 + vy,

Calories impact Head pose impact Walking speed

4.4.3 Vigilance

Motivation

“Vigilance” is another important field for the ACANTO project: An alert client perceives his
environment better and suffers from fewer accidents.

Inputs

Amongst other quantities, sleep quality represents an important input quantity for “Vigilance”
as it highly affects sleepiness and fatigue [33][70]. This quantity is represented by Fitbit’s time
asleep and time awake between sleep cycles. They are weighed with impacts of 20 % and 10
%, respectively.

As the word “Vigilance” may be used synonymously for arousal (being test, alert, excited), this
quantity - measured via the camera setup - is a logical input factor. We assume its impact at
40 %.
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