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ACANTO

Executive Summary

In this deliverable we present the set of algorithms and sensors currently adopted on the
FriWalk and developed within Task 3.1 - “Perceiving the user state”. This deliverable refers to the
following WP3 objectives:

* Objective 3.1: “360 degree user perception and modelling” - Perception of the user,
including location, physiological and emotional state, level of attention, as well as
her/his current activities/actions;

* Objective 3.3: “Collaborative sensing” - Cross-platform sensing and information sharing
allows for insights beyond the viewing angle of a single walker.

To address Objective 3.1, we have studied solutions for sensing the biosignals, and define the
associated biometrics, by means of the synergistic use of contactless sensors and mechanical
sensory data of the FriWalk. We then fully exploit the motion capabilities of the ACANTO
platform and the user centric sensing to conceive automated therapeutic exercises to be carried
out in the clinical scenario. Due to the relatively high amount of information that can be
collected from the available sensors, a User State Model is designed and implemented to extract
meaningful data and measure the effectiveness of the planned exercise. This is of primarily
importance for rating the non-clinical scenario exercises, since usually the therapeutic experts
define the clinical scenario exercises with proper target metrics.

Related to Objective 3.3 is the work carried out for collaborative platform localisation, which
presents an effective way to share the information among the team of FriWalks carrying out a
group activity. For localisation, since absolute reference is needed, we propose an experimental
study to minimize the number of landmarks to be deployed in a real environment taking into
account the accuracy limits of the single platform.




Chapter 1
Introduction

1.1 Role of this deliverable within WP3

One of the key ideas of ACANTO is to learn as much as possible about the user of the FriWalk
without the necessity to have this information actively provided by the user, since we want to
ease the burden for our target group and not to pose an additional challenge. In other words this
means continuous observation and perception of the user’s state. Some of the observations will
be relevant only at the time of the measurement, some will be meaningful by aggregation over a
longer period of time, some of them indicate physiological conditions with medical relevance
(e.g. with respect to therapeutic goals) while others address the motivational level or mood of
the person. In any case, the means to gather all this information are the sensors. These sensors
are deployed on the FriWalk/FriTab or alternatively also on the user, while the latter option is
considered very carefully since we want to acquire data in an utmost non-obtrusive way
whenever possible.

The purpose of user-centric sensing is at least twofold: First the derivation of automated activity
analysis in the context of therapeutic exercises to support our clinical scenario, and second the
aggregation of the sensory information to build up a semantically meaningful user state model
that allows for automatic activity evaluation and measuring the impact of activities on the user’s
well being.

Since the user is logically “linked” to the FriWalk we can implicitly localize the user via platform
localisation. However, the platform localisation is different from the perspective that it can use
intrinsic (e.g. odometry) as well as extrinsic (e.g. GPS) cues. Furthermore, localisation can also
be performed in a relative manner, i.e. with respect to other FriWalk units by introducing of a
novel concept of collaborative localisation that reflects an aim of ACANTO in a very natural
manner: fostering group activities and social contacts amongst older adults.

1.2 Deliverable objectives
The aim of this deliverable can be summarized as follows:

» Identify suitable solutions for sensing of biosignals and biometrics in the context of
FriWalk/FriTab.

» Exploitation of user-centric sensing for activity analysis in the clinical scenario
(i.e. automated therapeutic exercises).

» Conception and implementation of a user state model (USM) that is derived from the
sensory information

* Implementation and evaluation a novel concept for collaborative or synergic
localisation of an ensemble of FriWalk units.

1.3 Deliverable organization

The rest of the deliverable is organized as follows: In chapter 2 we present various options on
user-centric sensing including non-contact measurements for emotional valence, pain
estimation, heart rate, gait pattern and human body analytics. In addition we present a unified
graphical user interface for presenting this plurality of information for the purpose of clinical
data exploration. In the subsequent chapter 3 the sensory information is used to build
automated therapeutic exercises. Chapter 4 presents the conception and implementation of a
semantically meaningful users state model (USM) derived from the plurality of sensory and
intermediate level information presented in chapter 2. Chapter 5 reports on concepts for
localizing the FriWalk - and thus implicitly the user - in the environment. In particular chapter 5
elaborates on a novel concept for collaborative or synergic localisation, on the minimization of
landmark placements and on an outlook for the actual application of the collaborative platform
localisation in public scenarios.
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Chapter 2
User-Centric Sensing (Biosignals / Biometrics)

2.1 Emotional Valence and Pain Estimation

In ACANTO, we are interested in building a user state model as rich as possible, using
technologies with a low invasiveness mark. This includes both aspects related to the general
emotional state of the user (mid-long term), as well as more short-term physiological condition
aspects showing some medical relevance. Of course, when it comes to analysing the emotional
state, the face is known to be the index of the mind, meaning that one's mental constitution is
exhibited by his facial features. We argue that, while this is a generous statement, some degree
of information is indeed encoded into the appearance of the face. We leverage the current state
of research in face analysis to develop solutions for estimating the level of pain and the
emotional valence/arousal by means of facial analysis. Pain estimation and monitoring is of
great value for the clinical scenario, especially while patients are performing rehabilitation
exercises. The emotional valence/arousal, on the other side, bring substantial colour in painting
the long term user state model.

The proposed solutions are based on OpenFace [69], an open source tool implementing state-of-
the-art computer vision and machine learning techniques for facial behaviour analysis.
OpenFace includes components for facial landmark detection, head pose tracking and facial
action unit detection and intensity estimation. All these components have been validated in
extensive experiments, thus forming a solid block to build upon. In particular, we are interested
in evaluating the facial action unit intensity and head pose estimators as feature vectors for
subsequent face analysis tasks.

2.1.1 Pain Level estimation

Automatic pain recognition has recently become a valuable component in applications from
health care, ranging from monitoring patients in intensive care units, rehabilitation scenarios or
assessing of chronic lower back pain [7]. Current research on automatic pain detection is based
on automatic analysis of facial expressions, since it has been shown that facial cues are very
informative for pain detection [10]. Based on this observation, we propose a simple, yet
effective solution for automatic pain level estimation using as features facial action unit
intensities. We validate our approach on a publicly available dataset [4] containing videos of
subjects experiencing pain while being asked to perform physical exercises.

4

Figure 1: Examples from UNBC-McMaster Pain Shoulder Archive. The first two rows are labelled at their
peak pain intensity frame with a PSPI score of 6, whereas in the last row, the peak pain intensity frame is
labelled with a PSPI score of 14.

Our system is based on Random Regression Forests [79], widely used for their computational
efficiency and their powerful feature selection mechanism. We grow each tree by sequentially
splitting non-leaf nodes following a classical information gain maximization principle. Assuming
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V= {1)1, V2, eny UN} is one N-dimensional feature vector, we define a set of K binary tests

0= {tla Loy ey tK}, where tr : U; > T. The values of the index 7 and threshold 7 are randomly
generated. Additionally, trees are grown following a bootstrap aggregating strategy, such that to
avoid over fitting. The winning binary test in © is selected as the one that maximizes the
information gain associated to the splitting output. The process continues until the stopping
criterion is met (i.e. a predefined minimum amount of samples reach the splitting node), at
which point a leaf node is formed. Leaves store the class posterior probabilities computed from
the samples that reach them.

We train and validate our system on UNBC-McMaster Shoulder Pain Expression Database [4], a
dataset containing 200 video sequences from 25 different subjects showing participant’s faces
(who were suffering from shoulder pain) while performing a series of active and passive
physical tests using their affected and unaffected limbs on two separate occasions (see Figure 1
for some examples). A total of over 48K frames were labelled in terms of action unit presence
(FACS) as well as the Prkachin and Solomon Pain Intensity (PSPI) metric [6]. PSPI gives a pain
intensity estimate on a scale between 0 (no pain) and 15 (maximum intensity) based on
psychometric properties of facial expressions.

The baseline system reported in [4] solves a binary classification problem in which the positive
class is considered to be any frame labelled with a PSPI score different than 0. Different feature
sets are used for classification, namely SPTS - encoding shape parameters of AAMs fitted onto
subjects' faces and CAPP - accounting for appearance parameters of the same models.
Experiments are carried out on a leave-one-subject-out fashion and, as performance measure,
the Area under the ROC curve (AUC) is reported. For the same problem formulation, we train
our random forest classifier containing 100 trees, which we stop growing below 1000 samples
per node. The leaves store class probability measures derived from the samples that reach
them. As features, we use the 17 AU intensity predictions estimated using [69]. Results are
depicted in Table 1. As seen in the table, our RF-based approach generates better results
(average AUC of 82%, which corresponds to an average Equal Error Rate - EER of 0.38) than any
of the two feature types derived from the AAMs, but it is not able to overcome the fusion of the
two.

Classifier Linear SVM [4] RF(our implementation)
Features SPTS CAPP SPTS + CAPP AU Reg Scores
AUC (%) 76,9 80,9 83,9 82,0

Table 1: Pain intensity estimation results on UNBC-McMaster Database

2.1.2 Emotional Valence

In psychological terms, the emotional valence is a measure of the intrinsic attractiveness or
averseness towards an event, object or situation. Emotional arousal, on the other side, is a
measure for the condition of sensory alertness, mobility and readiness to respond to a stimulus.
Amongst the channels that encodes emotional information, the face provides an important
mean for communicating both affect valence and arousal.

We propose to solve the problem of estimating the emotional state using facial cues, by
exploiting existing work in facial expression recognition and by noticing there has been a
significant body of research [8][9] focusing on linking the space of discrete emotional states
with the continuous AV space. It all started with a study performed by ]J.A. Russel [8] who
discovered that emotion-related words coming from five different languages share pan cultural
properties, in the sense they are occupying similar positions in the arousal-valence circular
space. This means that concepts such as happiness, fear, anger, sadness, etc., they all have a
well-defined place on the AV circumplex model (see Figure 2).
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Figure 2: The two-dimensional circumplex space model. Image taken from [5] by combining data from [9]
and [8]

Based on the above studies and motivated by the lack of existing face datasets annotated with
AV labels, we propose to learn a model for predicting discrete emotional states and,
subsequently, map the discrete predictions onto the circumplex space model. More specifically,
we train a RF classifier, as previously explained, using as features the action unit intensity
estimates from [69] on data coming from two well known publicly available facial expression
datasets: CK+ [3] and BU3DFE [11]. Both these datasets contain face images labelled with the 6
universal facial expressions plus the neutral one. After filtering out the contempt class from CK+
and selecting the last two intensity facial expressions from BU3DFE, we ended up having a little
over 1700 samples for training/evaluation. We trained RFs containing 100 tree, following a
subject-independent 10-fold cross-validation, for which results are reported in Table 2 (average
normalized recognition rate) and Figure 3 (confusion matrix).

SAGERE 12 135 58 20 129 0.0

Mean normalized DI 10 02

recognition rate o

— AN ; ;

Training set 87.63%

Test set 75.56% e L9 &2

SUr33 26 1.0 108 EEXE 3.8 0.2

Tal?le 2: Avergge norma!lged recognltl_or) rate for NEl 60 14 55 19 27 00
facial expression recognition on both (joint) CK+

and BU3DFE HAF 02 32 05 82 08 00

SA DI AN FE SU NE HA

Figure 3: Confusion matrix obtained for facial
expression recognition on both CK+ and BU3DFE

As expected, happiness and surprise are the most difficult to confuse expressions, result in line
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with the majority of work in face analysis. The mapping values between categorical expression
labels and corresponding continuous AV values are reported in Table 3As a post-processing
stage, we apply temporal filtering to smooth the final predictions and integrate unstable
behaviour.

Sadness |.. Surprise Neutral |Happiness
(SA) Disgust (DI){Anger (AN)| Fear (FE) (SU) (NE) (HA)
Arousal -0.40 0,49 0.79 0.79 0.02 0,00 0.17
Valence -0.81 -0.68 -0.41 -0.12 -0.92 0.00 0.90

Table 3: Mapping values between discrete facial expression labels and continuous AV values following the
circumplex space model [5]

2.2 Non-contact HR Measurements

One of the key aspects when designing the components to build up the user state model is non-
obtrusiveness. Concerning the heart-related measurements, the COTS devices are generously
well represented on the commercial market, ranging from uncomfortable but more accurate
belts (e.g. Zephyr's Bioharness 31) to more comfortable but slightly less accurate wristbands. In
the latter case, the market has been recently flooded with photoplethysmography (PPG)
devices? measuring the light absorption properties of the skin, modulated by blood flow. One of
those devices is Fitbit's “Charge HR” which is used in ACANTO. Studies confirmed the
correlation between the Fitbit-measured heart rate and the actual heart rate [81][82]. For
resting and modest exercise - the scenarios we will mostly face in ACANTO - even stronger
correlations were shown in the publications.

Our comparison on heart rate of the “Fitbit Charge HR” and the “Hexoskin smart garment” -
with the latter treated as ground truth - showed positive results as well: In a “modest exercise
scenario” the average difference between the two devices was 5.2 beats per minute, which is an
acceptable deviation for the user state model. See Figure 4 for the heart rate time series.

Heart rate comparison:In rest

140

120
o r/\\(\
80 o £

<

HR (bpm)

60
40
20

0 20 40 60 80 100 120 140 160

Time (min)

w==HR_Hexoskin_sm  ===HR_FitBit

Figure 4: Comparison of the heart rate measurements of the “Hexoskin smart garment” (blue, treated as
ground truth) and the “Fitbit Charge HR”(red) during a “modest exercise scenario”, within which both the
resting heart rate (between minutes 0 and 100) and the heart rate during modest exercise (between minutes
100 and 160) was measured
However, recent studies [22][19] have shown that, while practically invisible to the human
observer, skin colour changes due to the blood flow can be captured on face videos and used to
measure the heart rate (HR). Motivated by these findings, we set up to investigate, as a research

! https://www.zephyranywhere.com/

Nowadays, wristband-like devices, such as smart watches, equipped with PPG modules have become ubiquitous.
Many companies (e.g. Samsung, Apple, Empatica, Fitbit) have now such products available at affordable prices, most of
the times accompanied by smartphone apps for data storage and processing.
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direction, the possibility of estimating the heart rate from face videos.

Ever since the seminal work of [22], computer vision community has focused on improving this
non-invasive HR estimation technique and, despite the considerable progress registered in the
last years, there are still open issues. One particularly important problem is the lack of current
approaches to operate in naturalistic conditions, dealing with variations caused by facial
expressions, head movement and changing illumination conditions, such as in ACANTO. To
address these challenges, we present a framework for remote HR estimation from visual data,
able to output the HR measurement while simultaneously selecting the most reliable face
regions. This strategy allows us to discard noisy features, due to spontaneous target’s
movements and facial expressions and thus, cast more reliable estimates on HR.

Estimating the heart rate from face videos involves capturing subtle changes (affecting colour
[25] and motion [13] induced by the internal functioning of the heart. This has become possible
thanks to significant improvements in face tracking and alignment techniques [12][21][17][26].
Previous work has successfully addressed HR estimation from videos only in laboratory
controlled conditions, constraining the subjects from facial expressions and mimics
[19][25][13]. Another limitation of previous approaches is the ability of providing short term
estimates. Indeed [19][18][20] provide only average HR measurements over a long time
interval, failing to capture short-term phenomena such as sudden changes due to specific
medical conditions or emotional context, frequently met amongst the elderly population.

Time

Figure 5: Given a video sequence, automatic HR estimation from facial features is challenging due to target
motion and facial expressions. Facial features extracted over time in different parts of the face (purple
rectangles) show different temporal dynamics and are subject to noise, as they are heavily affected by
movements and illumination changes. We propose a novel approach to simultaneously estimate the HR
signal and select the reliable face regions at each time for robust HR prediction.

In order to tackle the aforementioned limitations we introduce SAMC, a novel self-adaptive
matrix completion approach for HR estimation from face videos and provide an extensive
evaluation on two datasets: the MAHNOB-HCI, previously used for HR recognition research [18],
and a spontaneous dataset with heart rate data and RGB videos (named MMSE-HR), which is a
subset of the larger multimodal spontaneous emotion corpus (MMSE) [27] specifically targeted
to challenge HR estimation methods. Inspired by previous methods, we track the face in a given
video sequence, so to follow rigid head movements [18], and extract chrominance features [15]
to compensate for illumination variations. Importantly, most previous approaches preselect a
face region of interest (ROI) that is kept constant through the entire HR estimation. However,
the region containing useful features for HR estimation is a priori different for every frame since
major appearance changes are spatially and temporally localized (Figure 5). Therefore, we
propose a principled data-driven approach to automatically detect the face parts useful for HR
measurement, that is to estimate the time-varying mask of useful observations, selecting at each
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frame the relevant face regions from the chrominance features themselves.
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Figure 6: Overview of the proposed approach for HR estimation. During the first phase, we automatically
detect a set of facial key points and use them to define a ROI. This region is then warped to a rectangular
area and divided into a grid. For each small sub-region, chrominance features are computed (Phase 2). We
then apply SAMC on the matrix of all feature observations to recover a smooth signal, while selecting from
which sub-regions the signal is recovered (Phase 3). Welch’s method [24] is used to estimate the power
spectral density and thus the HR frequency (Phase 4).

The processing pipeline of our approach can be divided into 4 phases (as seen in Figure 6):
phase 1 is devoted to processing face images to extract face regions, that are subsequently used
in phase 2 to compute chrominance features. Phase 3 consists in the joint estimation of the
underlying low-rank feature matrix and the mask using SAMC. Finally, phase 4 computes the
heart rate from the signal estimate provided by SAMC.

Assuming a video sequence containing a human face, we use Intraface3 to localize and track 66
facial landmarks. Many approaches have been employed for face frontalisation [23][16].
However, in order to preserve the underlying blood flow signal, in the current study we define
the facial region of interest (see Figure 6 - Phase 1), from which the HR will be estimated. The
potential ROI is then warped to a rectangle using a piece-wise linear warping procedure, before
dividing the potential ROI into a grid containing R regions. For every region, we compute the
average pixel chrominance value, where for every pixel, the chrominance signal is defined as
C =Xy —aYf Thetermaisa proportionality factor & = U(Xf)/a(yf), where the numerator
and the denominator denote the standard deviation of Xf and Y/ respectively. Xfand Yf are
band pass filtered versions of X and Y, defined as: X =3R, —2G, and
Y = 1.5R, + Gy — 1.5B,, Finally, Rs, Gn and B, are normalized values of the individual
colour channels. Using chrominance features for estimating HR is challenging due to at least two
reasons: (i) the features associated to different facial regions are not fully synchronized and (ii)
face movement and facial expressions introduce many perturbations (local in space but large in
intensity) affecting the features’ values. To overcome these problems, we introduce a matrix
completion technique embedding a self-adaptation strategy, reducing the synchronization
discrepancy by grouping the the rows of the observation matrix that are (near)

linearly dependent and, at the same time, accounting for noisy parts of the data in driving the
learning algorithm.

To formalize the problem, we assume R regions from which chrominance features are
computed along T video frames. This gives us an observation matrix C' € REXT, Solving the
matrix completion problem means estimating the low-rank matrix that best approximates C.
Minimizing the rank is traditionally replaced with the nuclear norm (due to the NP hard nature
of the original problem), thus resulting in:

3 . .
http://www.humansensing.cs.cmu.edu/intraface
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. 2
min v B, +|E - C|I% o)

where v is a regularization parameter. To Eq. (1) we add a temporal smoothing term (by means

of a Laplacian matrix (L)], enforcing the estimated chrominance features to be within the heart
RXT
rate frequency range, and a binary mask M e {07 1} accounting for the unreliable parts of

C. Taking into account that IM needs to be learnt, the final optimization problem is of the form:

—~ 12
min v Bl + [Mo (B~ )|} + 7Tr(ELE") - 5 |M], + s« |[M ~ M

F  (2.2)
Eq. 2.2 is solved using the alternating direction method of multipliers (ADMM [14]), which the
low-rank matrix E and the mask M. Using Welch’s power spectral density estimation method
[24], from E we estimate HR.

We validate our approach on two public datasets, MAHNOB-HCI [18] and MMSE-HR [27], for
which we report the mean M. and standard deviation SDe of the difference between the
predicted value and the reference HR, H.(i) = Hy(i) — Hqt(l) over all the video clips.
Additionally, we compute the RMSE, the mean error rate percentage

N . .
MeRate = Ei:l ‘He(l)’ /Hgt(z) and the Pearson correlation between
H, = {Hp(1>7Hp(2)7 --->Hp(N)} and Hgt = {Hgt(l) qt(2> qt(N>} where N is

the number of video clips.

Method M,(SD.) RMSE M,ruwe p
Poh, et al., 2010 -8.95 (24.3) 25.9 25.0%  0.08
Poh, et al., 2011 2.04 (13.5) 136  13.2% 0.36
Balakrishnan, et al., 2013 -14.4 (15.2) 21.0 20.7%  0.11
Li, et al., 2014 -3.30 (6.88) 7.62 6.87%  0.81

De Haan, et al., 2013 4.62 (6.50) 6.52 6.39%  0.82
SAMC 3.19 (5.81) 6.23 5.93% 0.83

Table 4: Average HR prediction: comparison among different methods on MAHNOB-HCI dataset (best
performance in bold)

Performance of MAHNOB-HCI is given in Table 4, while HR estimation of MAHNOB-HCI
represents a challenging task for early methods, the more recent approaches, [18] and [15],
achieve high accuracy. Moreover, our approach outperforms competing methods by a small
margin. This can be explained by the fact that MAHNOB-HCI does not contain many sequences
with subject’'s movements and facial expression changes, while SAMC has been designed to
explicitly cope with the spatially localized and intense noise they generate.

Method M.(SD.) RMSE  McRrate p
Li, et al., 2014 11.56 (20.02) 19.95 14.64%  0.38
De Haan, et al., 2013 9.41 (14.08) 13.97 12.22%  0.55
SAMC 7.61 (12.24) 11.37 10.84% 0.71
Table 5: Average HR prediction: comparison among different methods on MMSE-HR (best performance in
bold)

To demonstrate the advantages of our method, we perform similar experiments on the more
challenging sequences of the MMSE-HR dataset. Here, we only compare our method against the
best-performing approaches from Table 4. Table 5 reports the results of our evaluation. On this
more difficult dataset, due to its capacity to select the most reliable chrominance features and
ignore the noisy ones, the proposed SAMC achieves significantly higher accuracy than the state-
of-the-art.

We find the results obtained by our proposed SAMC to be promising enough for further
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evaluation in ACANTO, keeping in mind the benefits of having a completely contact-free heart
rate measurement unit and, at the same time, leveraging the hardware setup already decided
for both clinical, as well as the daily usage scenarios, which includes a dedicated RGB camera for
face analysis. We are also considering alternative commercial solutions (in the form of the
wearable PPG wristbands), should this approach prove itself unreliable in practice.

2.3 Gait Analysis

2.3.1 Optimization

While the general proof of concept on “gait analysis on the move” was already given in
Deliverable 3.1, Siemens has undertaken significant efforts to improve robustness and
performance particularly with respect to the upcoming clinical evaluation, in which the system
should work by untrained users and different shoe appearances, shoe materials as well as
diverse physiological conditions and behaviours. In the following we list the highlights of our
achievements:

* Frame rate has been nearly doubled from 15 to 25 fps (frames per second) on
average even though the amount of gait information derived has been increased as
presented in chapter2.3.4.

» Qutliers in the feet trajectories have been mostly removed resulting in improved
consistency of feet pose and stance classification which eliminates the necessity of
post processing by raw data smoothing which would reduce the granularity of
measurements.

* (Quantitative and qualitative tests with various shoes and shoe cover materials have
been performed. Since RGBD cameras incompletely acquire some shoes materials,
an inpainting algorithm based on [2] has been identified in order to fill holes in the
depth map and is currently adapted for our project. While we need to precisely
locate the tip of each foot and its angle, the shape of the foot geometry needs to be
less precise but is required to be smooth in order to ease the detection process.
Inpainting supports this goal by producing smooth depth maps by filling the holes
in the data samples of the measured depth map. In addition keeping the frame rate
high excludes higher-level geometric shape fitting.

» Estimation of ego motion of the walker based on visual information has been
improved and allows for a minimal adapted walker with a gait camera solely
without requiring any other instrumentation like wheel odometry. This follows our
idea of introducing self-contained OEM like components that walker manufacturers
can utilize to upgrade existing walkers to smart walkers. In addition visual ego
motion and wheel odometry can complement each other.

» Initialization (i.e. ground plane estimation) has been improved and now can cope
with the presence of feet in the FOV reliably during the initialization. This was
necessary for usability reasons since its annoying for an elderly person being in
need of the support of a walker to step out of the FOV of the walker for initialization
of the device.

2.3.2 Tip toe stand detection

Standing on tiptoes for a given amount of repetitions is a relevant training exercise for older
adults to strengthen their physiology as pointed out by therapeutic experts in a clinical
workshop held in Getafe.
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Hence we did implement a classifier for detecting:

» aflat stand with (small instep inclination angle)
» atiptoe stand (with a high positive instep inclination angle)
* aheel stand (with a high negative instep inclination angle)

Detection works for each foot individually.

To ensure the shoe/foot shape does not influence the detection, a short initialization phase
(<3s) is required for each user. At every frame 3D points along the instep are automatically
detected (Figure 7 (a)) and a line is fitted through these points for the left and right foot (Figure
7 (b)). During initialization, a sequence of around 50 of the lines’ direction vectors is stored,
while the user keeps in a steady and flat stand with his toes pointing towards the camera. The
median of the sequence provides a robust description of the angular relation between the feet
and the ground plane.

Based on this reference, the detection is done by comparing the relative change of the current
angle to the initial flat stand angle. In order to prevent detection jitter, the current state is
determined as the median over the last 7 frames, which slightly increases response time.

Figure 7: Tip toe detection.
(a) Points along the instep in 3D point cloud. (b) Line fit through the points.

2.3.3 Integration of new Camera Devices

In our previous work we have performed a detailed comparison of various camera devices that
produce RGBD information in real-time. For the purpose of gait analytics none of these devices
was particularly suitable so we ended up with a compromise and selected the Creative Senz3D.
The Senz3D camera device supported our aim of a shorter minimum viewing distance and a
high frame rate (i.e. no motion blur) but at the cost of reduced general data fidelity that could
only partially be compensated by post processing. In the meanwhile two additional RGB devices
have become commercially available (Orbbec Astra S - aka former Fotonic Astra S, Intel
Realsense SR300) and both devices support reduced viewing distance while maintaining much
higher data fidelity as the Creative Senz3D. In addition Creative Senz3D is at the end of product
lifetime, and no longer produced so with respect to a later commercialization a replacement of
the sensor did become inevitable. Recently Fotonic has changed the AstraS product housing to a
more ruggedized industrial design (Fotonic “P-Series”) as compared to the OEM camera module
manufacturer Orbbec, while according to the data sheet the internals of the camera module did
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stay untouched. In addition a more accurately calibrated device version has been introduced
recently (Fotonic “Q-Series”). At least for the public scenario prices of the Fotonic devices now
exceed our overall budget constraints.

The following table compares the characteristics of the three RGB-D cameras, whereas Figure 8
gives an indication of data fidelity. Creative Senz 3D shows a very high amount of data noise that
needs to be suppressed by data smoothing. Fotonic/Orbbec Astra S as well Intel Realsense

SR300 both come with high data fidelity which goes down to a few millimetres error.

Creative Senz3D Orbbec Astra S Intel Realsense SR300
(formerly
Fotonic Astra S)
RGB-D TOF Structured Light Structured Light
measurement
principle
Depth map 320x240 (QVGA) 640x480 (VGA) 640x480 (VGA)
resolution
Frame rate 30 fps 30 fps Up to 60 fps
Range 15-99 cm 35-280cm 20-120 cm
Depth Sensor 74° 73° 85°
FOV (D)
RGB video 1280x720 1280x960 1920x1080
Device Size 108x52x54 mm 165x30x40 mm 110x12x4 mm
Price $100 $149 $149

Table 6: Comparison of relevant technical data of RGB-D gait cameras.

Intel Realsense SR300

Creative Senz3D

Fotonic/Orbbec Astra S

Figure 8: Comparison of data fidelity across RGBD cameras.

Astra S and SR300 devices are both suitable for our application while the Intel device due to the
smaller minimum viewing distance allows different placement options on the walker. On the
other hand the Orbbec Astra S is available as an OEM device without housing which also gives
some flexibility in integration. Orbbec also offers a smart camera that bundles the RBD camera
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with a processor board in a compact housing. This option needs further investigation and could
be attractive for a minimal invasive OEM walker add-on system.

2.3.4 Introduction of an Intermediate Level Representation

In addition to the raw data stream of foot positions and angles in space a data stream of
semantic per-foot information like “foot is visible” or “foot is on ground” as well as higher-level
semantic descriptions about stance related poses like “parallel stand” or “angular stand” are

introduced. Also some extra specific stands/poses like “tandem”, “tip toe”, “flat” or “on heel” are
part of the information and ease the derivation of associated clinical test.

The following table gives an overview on the granularity of information that is made available.
The data can be easily serialized, represented as a 32-bit integer value.

Bit Flag (description) Bit | Flag

0 Only one foot visible (I or r) 15 Tandem

1 Is visible (r. foot) 16 Semi-Tandem
2 Is visible (I. foot) 17 Angular 1

3 Is on ground (r. foot) 18 Angular 2

4 Is on ground (I. foot) 19

5 Flat (r)*

6 Flat (I)*

7 Tip toe (r)*

8 Tip toe (I)*

9 On heel (r)* To Not defined yet/
10 On heel (I)* reserved for future use (RFU)
11 Parallel

12 Open

13 Closed

14 Side by Side 31

*requires user specific initialization

Table 7: Intermediate level semantic representation on gait parameters.

All of these parameters are calculated in real-time at a frame rate of typically 25 fps and are
visualized for demo/testing purposed as shown in Figure 9. For the purpose of integration in
the clinical activity analysis these quantities are published as ZMQ messages.
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Figure 9: Live-view on intermediate level gait semantics as displayed in the demo-application.
(a) Feet in parallel stance. (b) Tip toe stance, a specific stance required to be detected for training exercises
(c) Semi tandem stance (as part of the SPPB balance test). (d) Angular V shaped stance.
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2.4 FriWalk Body Detector Module

The user perception modules on board the FriWalk should be able to provide detailed
information about the user in real time. Information such as the body posture, stability and gait
of the user are valuable for both the clinical functions as well as the accident prevention and
guidance capabilities of the device. As part of the ACANTO perception package, FORTH is
developing a number of human body detection and tracking modules. The modules provide
articulation information from marker-less visual observations obtained by the depth sensor
located in the front of the FriWalk.

2.4.1 Evaluation of the FORTH Human Body Tracker (FHBT)

The baseline body tracking method [44] implemented by FORTH and detailed in deliverable
D3.1 can operate with input provided by any of the on board depth sensors, mounted in the
front or in the back of the walker. Depending on the sensor used and on the distance of the user
to the camera, the method can detect the user and estimate the 3D pose of either the full or the
upper part of his/her body (up to 4 meters away). This capability enables the FriWalk to
monitor the user's upper body while using the device and facilitates the implementation of
clinical exercises and “exergames”. FHBT is a generative, disjoint evidence method that
performs tracking by-detection and detection-by-tracking. Body parts are identified
independently and then assembled together in a human model*.

The estimation of the articulated motion of the human body is very important to a number of
real world applications, including but not limited to surveillance, gaming, medical rehabilitation,
human-robot interaction, smart environments and many others. It is considered to be a
challenging problem because of its high dimensionality, the variability of the tracked persons
regarding their appearance and sizes, the spatially and temporally extended (self)-occlusions,
etc. A number of practical approaches simplify or even avoid these problems by using special
hardware that is placed on the environment and/or markers/full body suits [49] worn by the
persons to be tracked. However, these are invasive solutions. Unobtrusive, marker-less tracking
is definitely preferable since it does not interfere with the environment, the subject and the
performed actions.

The methods that use marker-less visual data as their only input fall into three basic categories,
the generative, the discriminative and the hybrid ones. Each class of methods has its own
characteristics, advantages and disadvantages. Discriminative methods are fast, but rely on a
discrete set of training poses whose selection determines the accuracy of the obtained results.
Typically, they operate as single frame pose estimation methods, so they do not need to be
initialized and they do not drift. The generative approaches provide accurate, physically
plausible solutions, typically at a high computational cost. They also require initialization for the
first frame, and may suffer from drift and tracking failures that are often irrecoverable. Hybrid
methods integrate generative and discriminative components towards combining the
advantages of both worlds.

We evaluated three approaches for 3D human pose estimation, one representative of each class.
The evaluation has been performed on a dataset annotated with ground truth. The obtained
quantitative experimental results help in assessing the relative performance of these methods
and in deciding which is preferable in which situation.

The OpenNI method [50]: This is a widely employed, purely discriminative method. It is
applied on the input of a single RGBD camera.

4 See also https://youtu.be/ZKICO9PA1IDg
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The HYBRID method [46]: As a hybrid method?, it consists of a discriminative and a generative
component. The generative, joint evidence component of the method requires input from two
extrinsically synchronized RGB-D cameras that is used to reconstruct the 3D volume occupied
by the human body. Then, human pose estimation is formulated as an optimization problem
that minimizes the discrepancy between the 3D occupancy of hypothesized instances of a
human body model and the volume reconstructed from the observations. To track the human
pose, solutions for a certain frame are initialized at the vicinity of solutions estimated at the
previous frame. However, the solution suggested by the discriminative component (OpenNI) of
the method is also considered as a human pose hypothesis to (a) adjust the human model
parameters to the tracked individual and (b) safeguard from abrupt human motions as well as
from tracking failures.

The FHBT method [44]: This is a generative, disjoint evidence method that performs tracking
by-detection. Body parts are identified independently and then assembled together in a
complete modelé.

Characteristics OpenNI HYBRID FHBT
Method type Discriminative HYBRID Generative
Number of cameras 1 2 1
Auto-initialization Yes, special pose Yes, special pose Yes, any pose
Initialization speed Slow (>3 sec) Slow (>3 sec) Instant (0.03sec)
Auto recovery from failures Yes Yes Yes

Handles various body types Yes Yes Yes

Handles occlusions No No Yes

Moving camera(s) No No Yes

Ensure physical plausibility No Yes No

Mode of operation Online Offline Online

Real time performance Yes No Yes

Table 8: Overview of the evaluated methods with respect to a number of key characteristics and properties

The main characteristics of the evaluated methods are summarized in Table 8. For more details,
the reader is referred to the corresponding references. In general, OpenNI is a flexible and fast
method. As suggested by the extensive evaluation performed in this paper, its accuracy is
moderate. One of its main drawbacks is its long initialization time. The HYBRID method inherits
the long initialization time from OpenNI. Moreover, it relies on a more complex setup of two
extrinsically calibrated RGBD sensors and its computational requirements are quite high, i.e,,
near-real-time performance can only be achieved with an elaborate GPU-based implementation
on a high-end computer featuring a state of the art graphics card. The experimental results
demonstrate that in return, the HYBRID method outperforms the two others in terms of
accuracy. The FHBT method is less accurate than HYBRID but on par with OpenNI. This fact,
together with other advantages of the method (see Table 8), make it an attractive solution to a
number of applications that require knowledge of the human body pose.

24.1.1 Human body model

The employed articulated model of the human consists of a main body, two legs, two arms and
the head (Figure 10). The kinematics of each arm is modelled using six parameters encoding
angles. Two parameters determine the shoulder position with respect to the torso, three

% See also https://youtu.be/n5irgHVuFwc

6 See also https://youtu.be/ZKIC9PA1IDg
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parameters the upper arm with respect to the shoulder and one parameter the elbow with
respect to the upper arm. Six parameters are also used for a leg, three for the root, one for the
knee and two for the ankle. Two parameters are used for the head, and three parameters for the
articulation between the torso and the hip. The global position of the body is represented using
a fixed point on the hip. The global orientation is parameterised using Euler angles. The above
parameterisation encodes 35 degrees of freedom (DOFs) human model with each DOF
represented by a single parameter.

Head branch
2 joint parameters,
2 primitives

Left arm branch
6 joint parameters,
5 primitives

Right arm branch i
6 joint parameters,

5 primitives
/A N
(
\ Torso branch
S~ ) - =" 3 joint parameters,
T 2primitives

Hip branch 7/
6 position parameters, |
3 primitives AN

Left leg branch
6 joint parameters,
6 primitives

Right leg branch
6 joint parameters,
6 primitives

Figure 10 The employed human body model. Model points with a red "+" denote joints whose 3D position is
taken into account in defining the tracking error.

On top of the 35 mobilities of this model, 9 parameters control the lengths of certain human
body parts. These are the upper body length (UBL), the lower body length (LBL), the shoulders
neck distance (SND), the head neck distance (HND), the legs hip distance (LHD), the back arm
length (BAL), the forearm length (FAL), the back leg length (BLL) and the front leg length (FLL).
Table 9 presents ground truth values for these parameters for the subjects of the employed
dataset. The parenthesis next to a parameter name refers to the corresponding body segment(s)
in Figure 10.

It has to be noted that individual methods employ their own, internal models for 3D human
pose estimation. The model described above and illustrated in Figure 10 is used for the
evaluation of the performance of the benchmarked methods, only. Thus, the relation of the
above model to the ones used internally by each method has been established and used to bring
all results to the same reference frame so as to enable their direct comparison.
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