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Executive Summary

The deliverable D2.2 “Human motion models”, due at month 24, presents the research activities concerning

the mathematical models for human locomotion in crowds and carried out within Task T2.1 “Models for social

interaction”. It focuses primarily on Objective 2.1 of WP 2: “identify behavioural patterns that emerge when

a group of people moves in shared space and describe them by appropriate mathematical models”. Indeed,

a key component of the FriWalk developed in the ACANTO project is its ability to move in shared, crowded

environments avoiding collisions, respecting safety limits and obeying to unwritten social rules while moving

towards the desired destination. To this end, the Activity Planner and, more importantly, the Reactive Planner

(both developed in WP5 - “Execution Support of Social Activities”) have to rely on reliable human motion

models to carry out predictions on future human motion intentions. Similarly, both the collaborative localisation

and the interpretation of social context developed within WP3 - “Perception of Users and Environment” benefit

of an effective model of social motions for individuals and groups. Finally, motion patterns have also an

important impact on the manoeuvres the FriWalk has to generate, hence on the work carried out in WP6 -

“Design of Robotic Personal Devices”.

In this deliverable the new model of human locomotion proposed within ACANTO is presented. Our solution,

called Headed Social Force Model, relies upon the broadly known Social Force Model and solves some of its

descriptive limitations, as shown by simulations in this deliverable. Observations made on actual experiments

with human beings and reported in D2.1 have been used to validate the proposed model.

To aid the efficiency of group motion planning, we have developed the notion of group abstraction to simplify

the models of large numbers of pedestrians. In this deliverable we present the successful results of applying

on-the-fly trace inference and group abstraction to observations of real pedestrians in a crowded environment.
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Chapter 1

Introduction

In this deliverable, we present the definition of a new mathematical model for human locomotion, which stems

from the analysis carried out in D2.1 - “Human motion models (preliminary)”, in which a taxonomy of the dif-

ferent approaches proposed in the literature, inspired to the survey [62], has been presented and deeply detailed.

Starting from the historical perspective of building evacuation dynamics in both emergency and normal situa-

tions, in which the models are based on macroscopic quantities, such as densities and fluids [23], the analysis

in D2.1 focused on the models of relevance for the navigation problems of the FriWalk, i.e. where the inter-

actions are not so frequent as in overcrowded evacuation dynamics. In this framework, microscopic models of

pedestrians are preferable. In such a case, the proposed approaches can be roughly categorised into four main

classes: cellular automata [7], agent-based models [63], graph-based methods [6] and social force models [22].

Cellular automata are represented by a discrete system evolving on a discrete set of cells at discrete time inter-

vals. The value of each cell depends on the modelled behaviour of the agent occupying it, on the neighbouring

cell values and on a set of local updating rules (e.g., see [47, 18, 50]). Agent-based approaches model the active

and reactive behaviours of the pedestrians according to stochastic models. In this framework, constant velocity

models have received large attention since they are easily tractable and allow the direct use of Kalman filters

for predictions and belief computations (e.g., see [12, 32]). In graph-based approaches, the environment is

subdivided into regions using empirical observations and learning algorithms. The regions are usually mapped

as nodes on the graph, while the paths joining them are the arcs. The nodes are usually considered as places in

the environment of particular interest, where people stop or make decisions (e.g., see [34, 6]).

In the rather broad set of microscopic solutions, the Social Force Model (SFM) turns out to fit best to the project

purposes. Basically, such a model assimilates each individual to a particle subject to social forces which drive

her during the motion [22]. A recognised plus of this model is its possibility to describe group of people

walking together while maintaining social interactions [10, 57]. An outcome of the D2.1 - “Human motion

models (preliminary)”, highlighted also by the empirical evidence of the simulated visit at the museum, was the

lack of an appropriate kinematic model for the human locomotion embedded in the SFM framework to generate

more realistic trajectories (e.g., alternating forward motions and turnings). As a consequence, an in-depth study

has been carried also to properly select additional force terms accounting for group behaviours.

The main outcome of the study summarised in this deliverable was the conception of the Headed Social Force

Model (HSFM), which is an enhanced version of the traditional SFM that explicitly accounts for the pedestri-

ans’ heading. To this end, we describe the motion of each individual by means of a dynamic model similar

to that adopted in [40] for generating biologically-inspired robot trajectories. The main contribution to the

literature in this field is the introduction of suitable model inputs (i.e., forces and torques which drive the dy-

namics of each pedestrian), with the purpose of maximising the realism of the resulting human trajectories. In

doing so, several conflicting objectives have to be taken into account. In low density scenarios, the pedestri-

ans’ motion should be as smooth as possible, consistently with what is observed in practice [45]. Similarly, in

these circumstances, lateral motions should be avoided since individuals walk ahead most of the time. On the
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contrary, in crowded or cluttered environments, the interaction among pedestrians, as well as between pedestri-

ans and the environment, is stronger and determines most of the pedestrians’ behaviour. The adopted solution

consists in computing the model inputs as suitable functions of the various force terms in the traditional SFM.

Additionally, a new optional force contribution is introduced in order to account for people walking together

as a single group. It is shown that considering the pedestrians’ heading enhances the fidelity of the model in

two ways. Whenever nonholonomic motion patterns naturally arise, the generated trajectories resemble more

closely those empirically observed. Typical examples include people walking in open spaces or reaching close

targets. More generally, accounting explicitly for the pedestrians’ heading helps to increase the regularity of the

trajectories, resulting in fewer abrupt changes of direction and a reduced number of collisions. In this deliver-

able we present the ideas underlying the HSFM and we show that the SFM can be naturally retrieved when the

environment becomes very cluttered, due to the presence of obstacles or of an overcrowded area. The proposed

blend between the SFM and a more regular trajectory generator addresses an issue highlighted in D2.1 - “Hu-

man motion models (preliminary)”, that is the necessity to switch between different behaviours according to the

users’ surroundings. Furthermore, it is worthwhile to note that within the ACANTO project, this is extremely

beneficial since the model can be used to predict the motion of the human beings in the surroundings but also

as a reference model to generate the path for the FriWalk, which is intrinsically nonholonomic.

The performance of the HSFM is evaluated via numerical simulation under very different operating conditions,

and a sensitivity analysis of the model behaviour with respect to variations in the model parameters is presented.

As a byproduct, guidelines on the selection of the parameter values are obtained.

The potentiality of the HSFM has been tested in the same simulations set-up used in D2.1 - “Human motion

models (preliminary)” to verify if the proposed model solves some of the descriptive issues of the SFM. More-

over, the HSFM has been tested in a simulation environment mimicking the experimental set-up adopted in

D2.1.

We make intensive use of the SFM in our reactive motion planner, developed by WP5, to predict the likely

outcome of different actions (directions of motion) of the FriWalk users. Our group motion planning problem

potentially scales exponentially with the number of participants in an activity and the number of other pedestri-

ans in the vicinity. It is well known, however, that pedestrians often travel in small social groups that maintain

their formation in the short to medium term [25]. We observe that it is therefore not necessary or desirable to

“mircromanage” the motion of FriWalk users in a group, and better to model the group as a single agent. This

approach significantly eases the computational burden and allows the pedestrians to manage their own social

interactions.

In Chapter 4 we present our on-the-fly trace inference and group abstraction algorithms. We first describe

our motion planning approach and thus motivate the notion of modelling pedestrian behaviour at the level of

groups. We then present our algorithms in detail and visualise the results of applying them to the ETH Zürich

BIWI Walking Pedestrians dataset.1

The deliverable is structured as follows. In Chapter 2 the HSFM is introduced and discussed in details. In Chap-

ter 3 the simulation results of the HSFM in the same scenarios of the D2.1 are presented. In the same chapter,

scenarios mimicking the behavioural dynamics experiments presented in D2.1 are also reported. Chapter 4

first recalls the motivation of group abstraction, then describes the algorithms we have developed and finally

presents the successful results of applying them to a standard walking pedestrian dataset. Finally, in Chapter 5

the relation of the WP2 results in the general framework of ACANTO is described.

1www.vision.ee.ethz.ch/datasets/
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Chapter 2

Beyond the Social Force Model

The idea of modelling pedestrian motions by using a system of forces describing social interactions dates back

to 1979. In [44], magnetic forces acting on a pedestrian and generated by a magnetic pole has been utilised

for computer simulations with the purpose of designing building architectures. The Social Force Model (SFM)

[22, 20] is one of the most popular human motion models based on social forces. In the SFM, each individual is

assimilated to a point-wise particle subject to social forces. Hence, the pedestrians’ dynamics are described by

means of a system of differential equations. The SFM is especially well suited to reproduce individual motion

of pedestrians in high-density scenarios (crowd), as well as the interactions occurring among pedestrians. The

potential of the SFM, and in general of models based on social forces, in providing realistic representations of

crowd behaviours has been widely acknowledged [21, 56, 17]. Due this, the original formulation of the SFM

has been successively refined in the literature. For example, in [26] the authors propose an alternate version

considering both relative positions and velocities, which works particularly well for low density cases. Relative

velocities between pedestrians are instead considered in [61], while [52] uses pedestrians absolute velocities to

govern the user head-on interactions. The relative positions and velocities provide also a way to account for

the stop situation, which cannot be modelled by the original model [27, 51]. For example, [27] proposes three

different SFM models for agents that are standing still. The models describe the possibility of the agent to avoid

incoming humans by coding a step forward/backward behaviour, the ability to recover its desired position as

well as changing it according to the environmental situation. The idea of relative velocities is further extended

in [58], where the estimate of the “time to collision” is included in the SFM formulation for repulsive forces.

Some versions of the SFM take into account the prediction of possible collisions explicitly, as in [53], where the

time to collision has been firstly reported in lane-like avoidance by expressing the anticipation time, or in [46],

where an additional force term is added to the original SFM as a function of the body and face poses.

However, to the best of the authors’ knowledge, the different versions of the SFM have not explicitly modelled

the dynamics of the pedestrians’ heading so far. In the literature, at any time, a person is supposed to be able to

move freely in any direction. On the contrary, empirical evidence shows that, most of the time, pedestrians tend

to move forward, i.e. their velocity vector is most often aligned with their heading, due to the biomechanics

of humans. This phenomenon has been observed by several studies [3, 2, 15], which come to the conclusion

that a nonholonomic model may be more appropriate to describe human motion in many cases. For instance,

unicycle-like models, widely used in the mobile robotics field, are able to accurately reproduce goal-oriented

locomotion of an individual moving in free space [3]. Moreover, the adoption of such models in [2] allow the

authors to give a nice interpretation of the mechanism underlying the formation of human trajectories (namely,

the minimisation of the time-derivative of the path curvature).

To overcome this limitations, we introduce the Headed Social Force Model (HSFM) in order to enhance the

traditional SFM by explicitly accounting for the pedestrians’ heading, as discussed in the Introduction and as

detailed in Section 2.3.

The findings reported in this chapter are part of two publications [13, 14] written in collaboration within the
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ACANTO project between UNISI and UNITN.

2.1 The Social Force Model

In this section we will briefly summarise the SFM, denoting vectors in bold type. Agent i has mass mi centred

at position xi ∈ R
2 in the environment, radius ri and velocity vi ∈ R

2. The SFM is described by a system of

linear differential equations
{

ẋi = vi

v̇i =
v0

i
−vi

τi
+ fi+ξi

mi

(2.1)

v0
i is the driving (desired) velocity of agent i, represented by a product of speed v0i and normalised direction

e0i . Usually, e0i is given by the line joining the current position and the next via point. Importantly, since v0i is

by default set to the user’s preferred walking speed, v0
i is time invariant between via points. τi is the time taken

to react to the difference between desired and actual velocity, while ξi is a noise term modelling fluctuations

not accounted for by the deterministic part of the model. The noise term can also serve to avoid deadlocks

and hypothesise alternative trajectories. Usually, the ξi is assumed normally distributed. In the absence of the

exogenous inputs fi and ξi, the agent’s trajectory simply converges to the driving velocity with time constant

τi. fi is the overall force acting on agent i resulting from other objects in the environment and is given by

fi =
∑

j 6=i

[f socij + fattij + f
ph
ij ] +

∑

b

[f socib + f
ph

ib ] (2.2)

The first term on the right-hand side of (2.2) includes all the forces on agent i resulting from interactions with

other agents: f socij is the repulsive social force that inhibits strangers from getting too close, fattij is the attractive

social force that, e.g., brings friends together, f
ph
ij is the physical force that exists when two people come into

contact. The second term includes the forces acting on agent i as a result of fixed environmental obstacles (e.g.,

walls): f socib is the social force that inhibits agent i from getting too close to the boundaries, f
ph

ib is the physical

force that exists when agent i touches the boundary b.
f is principally a function of the distance between an agent and the other objects in the model. dib is the

minimum distance between the circumference of agent i and fixed object b. dij is the distance between the

centres of mass of agents i and j, i.e., the centres of the discs, while rij = ri + rj is the “touching distance”.

To aid modelling the different force regimes that exist when agents are not in contact and when they touch (i.e.

agents i and j touch if rij − dij ≤ 0) it is customary to choose the function Θ(rij, dij) = max(0, rij − dij).
Using these notions, the various repulsive social and physical forces of (2.2)) are defined as follows:

f socij = {Ai exp[(rij − dij)/Bi]}nijΛ(λi, ϕij) (2.3)

f
ph
ij = k1Θ(rij − dij)nij + k2Θ(rij − dij)∆vtjitij (2.4)

f socib = {Ai exp[(ri − dib)/Bi] + k1Θ(ri − dib)}nib (2.5)

f
ph
ib = −k2Θ(ri − dib)(vi · tib)tib (2.6)

nij (nib) is a normalised vector pointing from agent j (fixed object b) to agent i, i.e., the direction of the

repulsive force. tij (tib) is a normalised vector tangential to the relative movement of agent i and agent j (fixed

obstacle b), i.e., the motion tangential direction. ∆vtji = (vj − vi) · tij is the tangential velocity difference.

The social forces (2.3) and (2.5) increase exponentially with reducing distance between objects, with a scale

defined by constants Ai and Bi. In particular, Ai is the force acting on agent i at the touching distance; Bi is

loosely the distance at which the force takes effect.

Λ : R2 7→ [0, 1] is a function that gives greater weight to the social force (2.3) arising from the agents in front

of (notionally, seen by) an agent. λi is a parameter that regulates the effect of Λ on agent i, while ϕij is the
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angle between the directions e0i and −nij , i.e., the field of view of the agent. The physical force (2.4) between

agents comprises a repulsive body compression force (first term) that acts in direction nij , plus a frictional force

(second term) that acts in direction tij to impede the relative tangential movement of two agents in contact. k1
and k2 are constants that define the scale of the physical forces. The physical force (2.6) between an agent and

a fixed object is solely described by a frictional term.

A more detailed description of the SFM can be found in the original Helbing paper [22] or in the deliverable

D2.1.

2.2 The Non-Holonomic Nature of Human Locomotion

The fact that the SFM cannot completely describe the interactions between humans, even in the presence of

improvements of the original model, i.e., [21, 26, 52, 58], has been also recognised in [53] where the unnatural

persons behaviours, such as oscillations in position when a person approaches a standing or slow obstacle or

erratic behaviour when two persons meet in a corridor, have been observed. Some of these issues can be solved

using a non-holonomic model.

Using empirical evidence, many authors have recognised the necessity to include a non-holonomic behaviour

in the human locomotion, for example in [3] and also similarly adopted in [37]. In particular, [3] noticed that

the motion of the torso of walking humans follows the dynamic of a unicycle–like vehicle. More precisely,

since the torso posture anticipates the route taken, a more reliable model can be given by the car–like model in

which the torso is the first derivative of the steering angle. Such an empirical observation is justified also by

the neuroscience approaches modelling the human motion [24, 35, 54]. Indeed, it has been noted an inverse

relationship between the path curvature and the walking speed that obeys to the so-called power law [35].

Using this perspective, [2] defined an inverse optimal control problem based on a car-like model to generate

human-like trajectories in empty spaces. Nonetheless, in both [3, 2] the non-holonomic approach for the human

locomotion is considered valid only for a subset of the possible walking behaviours, e.g., it cannot verify the

step-aside manoeuvre or the backward manoeuvre, which can be instead fused coherently with a blending

approach.

From a different perspective, [38, 49] adopt weighted average filters in their modified SFMs to avoid abrupt and

sharp velocity changes in both directions and amplitude. The resulting model very much recalls the findings on

nonholonomic kinematic models [37, 3, 2]. Moreover, [50] also noticed that depending on the current human

being velocity the mobility changes in a way that very much recall the nonholonomic constraints as defined

in [3].

In light of this considerations, the HSFM presented next tends to inject this nonholonomic behaviour in the SFM

whenever the surroundings verify the applicability of such a model, i.e., enough free space, while it naturally

turns to the standard SFM in overcrowded situations.

2.3 The Headed Social Force Model

Humans walk ahead most of the time, and their motion can be well approximated by nonholonomic models

[3]. There are some circumstances, though, in which sideward motions violating nonholonomic constraints, are

commonly observed (e.g., avoiding unexpected obstacles, negotiating a narrow passage or navigating in highly

crowded places). In these cases, a holonomic model is preferable (with a slight abuse of terminology, here we

denote by “holonomic model” any model not subject to nonholonomic constraints, thus including unconstrained

models). In order to account for such a variability, in the HSFM each individual is modelled by means of a

dynamic system like that presented in [40], which is able to reproduce both holonomic and nonholonomic

motion patterns by suitably designing the system inputs (i.e., the forces and torques driving the dynamics of the

pedestrians’ position and heading). In the HSFM, such inputs are designed as suitable functions of the social
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Figure 2.1: Force decomposition in the Headed Social Force Model. The force ufi , acting along the forward

direction, is the projection (along the same direction) of the total force fi resulting from the traditional SFM.

The force uoi , acting along the orthogonal direction, is the projection (along the same direction) of the only f ei
force.

forces acting on each individual, computed according to the traditional SFM. Let

fi = f0i + f ei

denote the total force acting on individual i according to the SFM. The term f0i is the force attracting the

pedestrian towards her target, such as a waypoint, whereas f ei accounts for repulsive and interaction forces

among individuals, and between individuals and the environment. In a sense, f0i models long-term objectives,

such as travelling a prescribed path, whereas the force terms in f ei account for short-term corrective actions, such

as manoeuvres needed to avoid nearby obstacles or pedestrians. Then, in the HSFM, the motion of pedestrians

is generated as follows:

• The forces ufi and uoi driving the translational dynamics are computed by projecting fi and f ei along

the forward direction of motion (identified by the pedestrian’s heading) and the orthogonal direction of

motion, respectively (see Fig 2.1).

• The torque driving the rotational dynamics is proportional to the projection of the term f0i along the

orthogonal direction of motion.

• An additional force term is added in order to ensure group cohesion when simulating people moving

together. This is achieved by: i) defining a rectangular region, centred at the group centroid, within

which the group members are expected to lie, and ii) exerting a force pushing the pedestrians back into

that region whenever they get out of it.

In both the translational and the rotational dynamics, damping terms are included in order to weaken oscillations

and obtain smoother trajectories. Only the force f ei is assumed to affect lateral moves, because they are mainly
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caused by the interactions with other pedestrians or the environment. On the other hand, body rotations are

generated by the lateral component of the force f0i , which is in charge of driving the pedestrian towards the

goal. This choice is derived directly from observations: a person tends to turn faster towards the target the more

she/he is attracted by the target itself. The idea of the group cohesion force is inspired by the approach proposed

in [42] for modelling small groups of pedestrians (from two to four individuals) walking together and subject to

social interaction constraints. In this deliverable, such an approach is adapted to the proposed dynamic model

which accounts for pedestrians’ heading. In particular, the force term is designed in order to reproduce the

formation of larger groups, including many individuals moving together (e.g., like a group of tourists following

a guide).

The proposed HSFM enriches the traditional SFM with a more complex human locomotion model which is

well suited to represent human trajectories complying with nonholonomic constraints, as typically occurs in

large spaces occupied by a limited number of pedestrians. At the same time, the HSFM preserves the power

of the SFM in realistically reproducing the flow of a large number of people moving in densely populated en-

vironments. A unique feature of the proposed model lies in its ability to adapt to the external conditions, by

smoothly switching between holonomic and nonholonomic motion patterns depending on a number of factors,

including the pedestrian density, the pedestrians’ goal and the clutter of the environment. Notably, this be-

haviour is achieved without the need of changing online any of the model parameters, but as a natural reaction

and adaptation to the external conditions.

We present now the mathematical details of the proposed Headed Social Force Model. Consider a system of

n pedestrians moving in a 2D environment. Following the modelling approach of the Social Force Model sub-

sumed in (2.1), the i-th individual, i = 1, . . . , n, is assimilated to a particle with mass mi, whose position and

velocity, expressed in a global reference frame, are denoted by ri = [xi, yi]
⊤ and vi = [ẋi, ẏi]

⊤, respectively.

The equations of motion are

ṙi = vi,

v̇i =
1

mi

ui,

where ui represents the social force driving the i-th particle. In order to include the pedestrians’ heading

into the model, it is convenient to attach a body frame to each individual, i.e. a reference frame centred at

the pedestrian’s position and whose x-axis is aligned with the pedestrian’s forward direction of motion. Let

qi = [θi, ωi]
⊤ be the vector containing the heading θi (angle between the x-axis of the body frame and that of

the global reference frame) and the angular velocity ωi = θ̇i of the i-th pedestrian. Denote by vB
i = [vfi , v

o
i ]
⊤

the velocity vector expressed in the body frame. The components vfi and voi of vector vB
i correspond to the

projection of the velocity vector vi along the forward direction and the orthogonal direction, respectively.

Clearly, vi = R(θi)v
B
i , where the rotation matrix R(θi) is defined as

R(θi) =

[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]

.
=

[

r
f
i roi

]

.

Then, similarly to [40], the human locomotion model can be written as

ṙi = R(θi)v
B
i , (2.7)

v̇B
i =

1

mi

uB
i , (2.8)

q̇i = Aqi + biu
θ
i , (2.9)

where

A =

[

0 1
0 0

]

, bi =

[

0
1
Ii

]

, (2.10)
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and Ii denotes the moment of inertia of pedestrian i. In model (2.7)-(2.9), the inputs are uB
i = [ufi , uoi ]

⊤,

whose entries are the forces acting along the forward direction and the orthogonal direction, respectively, as

well as the torque uθi about the vertical axis, as depicted in Figure 2.1. Notice that such a model is indeed

unconstrained. However, if voi (0) = 0 and uoi (t) = 0, for all t, the dynamic unicycle model is recovered. In

general, whenever voi = 0, the model features a nonholonomic behaviour, the velocity vector being aligned

with the pedestrian’s heading.

The basic idea of the HSFM is to compute the model inputs ufi , uoi and uθi on the basis of the the forces resulting

from the traditional SFM. To this purpose, the total force fi that acts on the i-th pedestrian according to [20] is

decomposed as

fi = f0i + f ei . (2.11)

The first term

f0i = mi

vd
i − vi

τi
(2.12)

accounts for the pedestrian’s desire to move with a given velocity vector vd
i . In (2.12), the characteristic time

τi > 0 is a parameter determining the rate of change of the velocity vector. The force

f ei = f
p
i + fwi (2.13)

accounts for the pedestrians’ interaction. The terms f
p
i and fwi represent the repulsive forces exerted on individ-

ual i by the other pedestrians and by possible obstacles present in the environment (e.g., walls), respectively.

The expressions of f
p
i and fwi are simply given by linear combination of the relations in (2.3)-(2.6) defined

for the standard SFM and define the effects of other pedestrians on individual i and the repulsive effects of

obstacles or boundaries such as walls on individual i, respectively, i.e.

f
p
i =

∑

j 6=i

f socij + f
ph
ij and fwi =

∑

b

f socib + f
ph

ib .

This is an alternative way to include all the effects of the SFM included in (2.2).

2.3.1 Force Inputs

The inputs of the HSFM are computed from f0i and f ei as follows. The input vector uB
i includes the forces

acting along the pedestrian’s forward direction and the orthogonal direction (see Figure 2.1). Given the total

social force fi, a natural choice for computing ufi is to project fi along the forward direction. In order to avoid

sideward motions if not strictly needed, the component uoi is computed by projecting the interaction force f ei
(possibly scaled), along the orthogonal direction. Finally, in order to drive to zero the sideward velocity voi
when the sideward force is zero, a damping term proportional to voi is added to uoi . Hence, the model inputs ufi
and uoi are computed as

ufi =
(

f0i + f ei
)⊤

r
f
i , (2.14)

uoi = ko(f ei )
⊤roi − kdvoi , (2.15)

where ko > 0 and kd > 0.

2.3.2 Torque Input

The input uθi represents the torque about the vertical axis which drives the dynamics of the pedestrian’s heading.

This term is designed on the basis of the force f0i defined in (2.12). Denote by f0
i and θ0i the magnitude and the
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phase in the global reference frame of f0i . Notice that both quantities are in general time-varying. The input uθi
is computed as

uθi = −k
θ(θi − θ0i )− kωωi. (2.16)

The parameters kθ and kω are designed in order to achieve suitable dynamics of the heading. It can be easily

verified that, with uθi defined as in (2.16), the orientation error θ̃i
.
= θi − θ0i evolves according to the dynamic

model

¨̃
θi +

kω

Ii

˙̃
θi +

kθ

Ii
θ̃i = −

kω

Ii
θ̇0i − θ̈0i . (2.17)

A possible design procedure is to select the values of kθ and kω on the basis of the desired poles λ1 and λ2

of the dynamic system (2.17). For the ACANTO model, real poles are considered, so that λ2 = αλ1 < 0, for

some α > 1. In turn, the dominant pole λ1 is selected as a function of f0
i

λ1 = −

√

kλf0
i

α
,

where kλ > 0 is used to tune the dominant time constant of system (2.17). The corresponding expressions of

kθ and kω are then

kθ = Iik
λf0

i , kω = Ii(1 + α)

√

kλf0
i

α
. (2.18)

The choice of time-varying poles allows one to modulate the responsiveness of the system with the intensity

of the driving force f0i . The underlying idea is that the more authoritative the f0i , the faster the change in the

pedestrian’s heading. In this way, the heading convergence rate is proportional to f0
i .

2.4 Enforcing Group Cohesion in the HSFM

Increasing attention is gaining the description of groups of people socially interacting while moving in an

environment, since it has been noticed that in some environments social groups comprise about 70%-80% of

the walking population [48]. A social group is a collection of people that move together to a common goal

and are engaged in a social relation [39]. The concept of relation is quite blurred, since it refers to both verbal

and non-verbal communication, such as gestures and gaze exchange [29], but it also comprises the probably

most important interaction of eye contact, which helps estimating the partners’ reactions and anticipating their

intentions [28]. Eye contact is also responsible of the equilibrium of physical proximity [4]. Social groups

have been investigated from a variety of different stand-points. For example, it has been observed that a group

of socially interacting and walking pedestrians with more than three persons tends to split into groups of two

or three elements with a very high probability [25]. The size of the social group has been also investigated in

the past and it has been conjectured that the probability of loosing or gaining a group member per unit time is

proportional to the group size [8, 41]. The velocity of the group has been also analysed: the more is the density

of the crowd, the less would be the velocity of the group, which is evidently true also for individuals. What is of

major interest is that the group velocity is inversely proportional to the group dimension [41]. Similar empirical

observations have been also collected by [30, 31].

In the deliverable D2.1, we have reported that the preferred spatial structure for three interacting persons is the

“V” or “U” formation with the vertex behind [10]. Since in low and moderate densities the group structures

bends forward in walking directions, and not backwards as a expected from mechanics of flexible structures

moving against an opposite flux [41], it is recognised in the literature that the formation is actively created to

facilitate the interaction process. Instead, as naturally expected, higher densities squeeze the structure. If the

density increases more, the structure is lost and the emerging behaviour of the group is to act like a “river” [19],

which is an SFM well described behaviour. Similarly to the blend between the nonholonomic motion and the
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original SFM, it turns again out that by injecting the group formation idea in the HSFM an accurate description

of the social interaction can be also given.

The very first effective approach that modifies the SFM with the purpose of including social interactions during

motions has been provided by [41], where the Authors add a new force term, the group force term, in order

to describe the aggregation forces. The group force term is the sum of three independent forces. The main

characteristic of this model is its ability to describe the abreast, the “V” and the “U” group formations in

the case of two, three or four group members, respectively. The idea of modifying the SFM by adding an

additional force term has been also used [55] for evacuation dynamics, in [17] to describe large group motions

or in [60, 59] using potential fields among the group pedestrians.

For the HSFM, we followed a similar path. In order to model a group of people moving together in a group,

the force input (2.14)-(2.15) can be modified by adding an additional force term, which forces the pedestrians

to lie within a given region.

Let c = 1
n

∑n
j=1 ri be the centroid of the group, and define pi = c − ri. The model inputs ufi and uoi are

computed as

ufi =
(

f0i + f ei
)⊤

r
f
i + kg1h(pi, r

f
i , d

f ), (2.19)

uoi = ko(f ei )
⊤roi − kdvoi + kg2h(pi, roi , d

o), (2.20)

where kg1 > 0, kg2 > 0, df > 0, do > 0 and

h(x,y, z) =

{

1 if |x⊤y| > z

0 otherwise.
(2.21)

16



Chapter 3

HSFM Simulations

In this section, the results of a number of numerical simulations are reported, in order to highlight the character-

istic features of the proposed model. Three different scenarios are considered. In Scenario I, we simulate two

simple case studies, involving a single pedestrian, aimed at showing the high fidelity of the HSFM in reproduc-

ing the trajectories of pedestrians moving in free space according to a nonholonomic behaviour. In Scenario

II, we consider three different experiments, involving a number of pedestrians ranging from 20 to 200. The

purpose is to illustrate the ability of the HSFM to automatically adapt the generated trajectories to the external

context, smoothly relaxing the nonholonomic constraints as the pedestrian density increases or unexpected ob-

stacles come into play. In Scenario III, we consider a more articulated case study, by simulating a group of 10

people visiting a museum together. The focus of this study is to show how the group force introduced in the

HSFM originates trajectories preserving the cohesion of the group. This section concludes with a discussion

on the role played by the parameters of the HSFM. An extensive simulation campaign is performed in order to

analyse the effect of parameter variations on the generated trajectories, thus providing useful guidelines for the

tuning of the model.

In all the simulations presented hereafter, the reference velocity vector vd
i , which is used by the SFM to com-

pute the force f0i (see (2.12)), is generated as vd
i = vdedi . The desired speed vd is assumed constant over

each simulation run. The unit vector edi , which identifies the desired direction of motion, is computed from a

sequence of way-points encoding the desired pedestrian path, similarly to [22]. Videos of the simulations are

available at http://control.dii.unisi.it/MobileRoboticsPage.

In the simulations, the radius ri and the mass mi of each pedestrian have been randomly generated in the

intervals [0.25 m, 0.35 m] and [60 kg, 90 kg], respectively, assuming uniform distributions. The inertia moment

Ii in (2.10) is computed as Ii =
1
2
mir

2
i , i.e., the pedestrian is assimilated to a cylinder rotating about its main

axis. The following parameters entering in the computation of the model inputs (2.14)-(2.18) and (2.19)-

(2.21) have been used in all the simulations (unless differently stated): ko = 1, kd = 500 kg·s−1, α = 3,

kλ = 0.3 N−1s−2, df = 2 m, do = 1 m and kg1 = kg2 = 200 N. The value of the parameters of the SFM used

in all the simulations are taken from [20].

3.1 HSFM Behaviour

3.1.1 Nonholonomic behaviour

To evaluate how well the HSFM can reproduce the nonholonomic behaviour empirically observed in [3], we

consider two use cases.

In the first example, a single pedestrian walks between two points A and B, multiple times. In this case,

the trajectory resulting from the SFM is quite unnatural, as the path boils down to a segment (red line in

Figure 3.1). In other words, the SFM models a human being that either walks forward and backward without
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Figure 3.1: Scenario I, alternate motion between two points. A single pedestrian has to move back and forth

between A and B, starting from A, with a desired speed vd = 1.5 ms−1: SFM (red) and HSFM (blue).

turning or turns instantaneously on the spot. This phenomenon is due to the SFM neglecting the information

about the pedestrian’s heading, so that forward or backward motions are equivalent. On the contrary, the

trajectory generated by the HSFM is more realistic thanks to the existence of a preferred direction of motion

(blue line in Figure 3.1). Although the HSFM allows a pedestrian to have her velocity vector not aligned with

her heading, the model input tends to drive the orthogonal component of the velocity to zero if no lateral forces

are present, thus generating an “almost nonholonomic” behaviour. It can be observed that in the resulting

path, the pedestrian approaches the turning point preparing to invert her orientation with a sort of U-turn, as it

happens in practice.

In the same setting, consider the case in which a pedestrian has to move from A to B, starting with four different

values of the initial heading θ(0) (see Figure 3.2). When θ(0) = π, the goal point B lies behind the pedestrian’s

back. In this case, the HSFM makes the pedestrian first take a step back to turn towards the goal, and then move

forward to reach the target. Clearly, the SFM trajectory lies on a segment once again, since the heading is

neglected.

The previous examples confirm that, in the considered scenario, the HSFM gives rise to a more realistic be-

haviour, endowing the pedestrian with the ability of moving in a nonholonomic way when she is expected to

do so.
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Figure 3.2: Scenario I, starting with different orientations. A single pedestrian has to move from A to B,

starting with different headings (denoted by the black dot), at a desired speed vd = 1.5 ms−1: SFM (red) and

HSFM (blue).
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Figure 3.3: Scenario II, Pedestrians in a corridor. A group of 20 pedestrians walking in the same direction

in a 7.5m-wide corridor at a desired speed vd = 1.5 ms−1. Three snapshots of a simulation run of the HSFM,

taken at different time instants t.

3.1.2 Blending between SFM and Nonholonomic behaviour

In this scenario, we consider three examples. In the first one, 20 pedestrians walking in a 7.5m-wide corridor

have to pass through a 2m-wide door (see Figure 3.3). In the second example, two groups of 10 pedestrians

are walking in opposite directions in a 5m-wide corridor (see Figure 3.4). In the third example, we consider

an evacuation experiment in which 200 pedestrians must get out of a 15m×15m room through a door of width

1 m, similarly to what presented in [20] (see Figure 3.5). In these experiments no group cohesion forces are

included.

For comparison purposes, the following indicators are considered:

• the average exit frequency of pedestrians F , i.e. the average number of pedestrians that pass through the

door per unit time (first and third examples);

• the average square of the magnitude of the jerk of the trajectories

J =
1

n

n
∑

i=1

1

T

∫ T

0

||ji(t)||
2dt, (3.1)

where n denotes the total number of pedestrians and ji is the jerk vector of the i-th trajectory, (i.e., the

third-order derivative of the position).

The first indicator has been selected as a measure of the macroscopic behaviour of the models. The second

indicator is used to evaluate both the regularity and the realism of the resulting trajectories. As a matter of fact,

it is commonly acknowledged that the motions performed by humans tend to be smooth and to minimise the

jerk, as first experimentally verified for hand movements in [16], and extended to the trajectories of walking

pedestrians later on in [45]. The obtained results can be summarised as follows.
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t = 3 s t = 8 s t = 13 s

Figure 3.4: Scenario II, Two groups walking in opposite directions. Two groups of 10 pedestrians each

walking in opposite directions in a 5m-wide corridor at a desired speed vd = 1.5 ms−1. Three snapshots of a

simulation run of the HSFM, taken at different time instants t.

Pedestrians in a corridor

In order to compare the trajectories generated by the SFM and the HSFM, a Monte Carlo analysis has been

performed. Starting from random initial positions and headings of the pedestrians (with zero initial velocity),

100 runs of the SFM and the HSFM have been simulated for 20 s. Concerning the exit frequency, both models

give similar results, with average values FHSFM = 2.70 s−1 and FSFM = 2.75 s−1. Overall the two mod-

els seem to reproduce the same macroscopic behaviour. However, significant differences can be appreciated

by looking at the regularity of the resulting trajectories. The average square of the magnitude of the jerk is

very different in the two cases, with average values during the door crossing (time range [6, 10] seconds) of

JHSFM = 4.1 · 10−4 m2s−6 and JSFM = 5.3 · 10−3 m2s−6. These figures capture the different qualitative

behaviours that can be observed by looking at the resulting trajectories. When compared to the HSFM, in the

proximity of the door, the SFM tends to generate vibrations, sudden changes of direction and even “bounces”

among pedestrians or between pedestrians and walls.

Two groups walking in opposite directions

Also in this case, results are averaged over 100 simulation runs. In this example, the difference of the indicator

J (JHSFM = 4.3 ·10−3 m2s−6 for the HSFM vs. JSFM = 2.3 ·10−2 m2s−6 for the SFM) is mostly due to the

very different trajectories over the time range [6, 10] seconds, where the two groups interact to negotiate the

traversing of the corridor. In this situation, the pedestrian motion generated by the HSFM is much more regular

than that reproduced by the SFM, in which several collisions among pedestrians belonging to different groups

are experienced.
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Figure 3.5: Scenario II, Evacuation of a room. A group of 200 pedestrians must evacuate from a 15m×15m

room through a door of width 1 m (see [20]).

Evacuation of a room

In the considered setting, the door can become a bottleneck and arching and clogging may arise in the proximity

of the door. In [20], it was studied how the exit frequency varies with the desired speed vd of the pedestrians.

As expected, at slow speeds, the frequency grows with vd. However, when vd exceeds a threshold value (about

1.5 ms−1) the frequency drops due to the increased jam induced by panic (the so called “faster-is-slower”

effect [20]). In order to evaluate the ability of the HSFM to reproduce such a phenomenon, the evacuation

experiment has been simulated for 60 s, at different desired speeds, ranging from 0.5 ms−1 to 6 ms−1. For each

simulation run, the average exit frequency resulting from the SFM and the HSFM has been computed. The

results are pretty similar (see Fig 3.6), thus confirming the adequateness of the HSFM also in highly crowded

environments.

Comments

Overall, previous results show that at a microscopic level, the HSFM generates smoother, and consequently

more realistic, trajectories than the traditional SFM. At the same time, the macroscopic behaviour of the whole

system, which is typically well approximated by the SFM, is fully preserved.
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Figure 3.6: Scenario II, Evacuation of a room. Average exit frequency: SFM (red) and HSFM (blue) for

different values of the desired speed vd.
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Figure 3.7: A visit at the Museum with Group Cohesion Forces. Snapshots of a simulation run of the HSFM

with the inclusion of group cohesion forces.

3.2 Group Cohesion Forces

In this scenario we test the ability of the HSFM to reproduce pedestrians moving together. As a case study, we

consider the visit of a museum carried out by a group of 10 people. The considered environment is composed

of two communicating rooms, each of which contains four artworks on display. Three doors connect the rooms

with the rest of the museum (see Figure 3.7). The objective of the group is to visit a selection of the pieces

of the exhibition in a given order, while avoiding collisions with obstacles and/or other individuals. Once the

visitors reach the selected artwork, they stop in front of it for a predefined amount of time, before moving to

the next point of interest.

We compare the results obtained using the HSFM with and without the group forces. In Figure 3.8 and Fig-

ure 3.7 four different snapshots of the trajectories from the two cases are shown. The main difference lies in

the way the group moves from one exhibition to the other. In the absence of group cohesion forces, the group

tends to elongate and the visitors form a line (see Figure 3.8). This unrealistic behaviour is avoided when group

forces are included (see Figure 3.7). A measure of the group cohesion is given by the average distance from the

centroid of the group, defined as

ξ(t) =
1

n

n
∑

i

di(t), (3.2)

where di(t) is the distance at time t of pedestrian i from the centroid of the group. This indicator gives a measure

of the dispersion of the pedestrians during their motion. The time evolution of ξ(t) is depicted in Figure 3.9,

in both cases. Without group forces, the group radius oscillates between small values (corresponding to the

visitors standing still in front of an artwork) and large values (when people switch from one artwork to the
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Figure 3.8: A visit at the Museum. Snapshots of a simulation run of the HSFM without the inclusion of group

cohesion forces.

next one). Conversely, the introduction of the group forces effectively keeps the group together, with a radius

smaller than 2 m.

3.3 Model Parameters Tuning

In this section, we study the role of the parameters of the HSFM on the resulting system behaviour. Specifically,

we consider separately the parameters which affect the computation of: i) the force input, ii) the torque input

and iii) the group cohesion term.

3.3.1 Force input

The force driving the translational dynamics of the pedestrian depends on two parameters, namely ko and

kd. The first one is a gain that modulates the force acting on the direction orthogonal to the pedestrian’s

heading. The second one is a damping coefficient on the speed along the same direction. As a case study

representative of the HSFM behaviour under most circumstances, the same example, described in the evacuation

scenario, involving 20 pedestrian crossing a door in a corridor, is considered (see Figure 3.3). In this analysis,

no group cohesion forces are included. Several simulations have been carried out for different combinations

of the parameter values. Figure 3.10 depicts a snapshot of the simulations taken when the individuals have

almost completely crossed the door. By looking at the different configurations of the pedestrians, the following

phenomena can be observed. For a given kd, the platoon gets wider as ko increases, since more authoritative

lateral repulsive forces among pedestrians are exerted. Parameter kd has an even greater impact on the width
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Figure 3.9: Mean distance from the group centroid over time. It shows the evolution of ξ with cohesive

forces (blue) and without cohesive forces (red).

of the platoon. For a fixed ko, the larger the value of kd, the faster the lateral speed is driven towards zero. As

a result, with very high values of kd the pedestrians tend to arrange in a line, which is an unrealistic behaviour.

Besides the geometric distribution of the individuals, both parameters have an effect on the smoothness of the

generated trajectories. To analyse this feature, 100 simulation runs have been performed, starting from random

initial conditions. In Figure 3.11, two indicators are shown as a function of kd, for different values of ko. The

first one is the average square of the magnitude of the jerk J as defined in (3.1), which measures the regularity

of the trajectories. The second one is ∆, defined as

∆ =
1

T

∫ T

0

ξ(t)dt,

where ξ(t) is given by (3.2). It represents the mean distance of a pedestrian from the centroid, averaged over

the whole simulation run. The evolution of J suggests that the trajectories become more and more regular

as ko decreases and kd increases. The tuning of parameter kd has to take into account also the impact that it

has on the geometry of the platoon, which in Figure 3.11 is summarised by the indicator ∆. Too large values

of kd imply a growth of the radius ∆, which, in turns, reflects the tendency of the pedestrians to form a line.

Hence, parameter kd has to be tuned by trading-off these conflicting objectives. Values in a neighbourhood of

ko = 1 and kd = 500 kg·s−1 have been observed to ensure regular trajectories and a realistic geometry of the
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platoon [50, 1]. Moreover, this choice guarantees very low sensitivity of the indicators J and ∆ to variations in

the model parameters, which suggests robustness of the system behaviour under different scenarios.

3.3.2 Torque input

The torque controlling the heading dynamics is designed via pole placement, so that the closed-loop system

has a desired pair of real poles. In this approach, a major role is played by the pole ratio α. The effect of α on

the resulting trajectory is clearly visible in Figure 3.12, for the simple case in which a pedestrian goes through

four way-points forming a square. Basically, the larger the α, the slower is the dynamics of the pedestrian’s

heading, which results in larger turning radius. Values of α in the range 3-5 seem appropriate for reproducing

a realistic path, the resulting curvature dynamics being neither too aggressive (i.e., α = 1) nor too loose (i.e.,

α = 10).

3.3.3 Group cohesion

The parameters defining the force term which aims at keeping together people belonging to the same group,

have a clear physical meaning. This makes their tuning much easier than the previous ones. Parameters df

and do are half of the side length of the desired rectangular region along the forward and orthogonal direction,

respectively. Parameters kg1 and kg2 correspond to the intensity of the cohesion forces acting along the forward

and orthogonal direction, respectively. In the simulations presented so far, the following values have been

selected: df = 2 m, do = 1 m and kg1 = kg2 = 200 N.
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Figure 3.10: Effect of ko and kd on the pedestrian trajectories. A snapshot of the simulation of 20 pedestrians

walking in a corridor, for different values of ko and kd [kg·s−1].
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Figure 3.11: Effect of ko and kd on trajectory regularity and distribution of the pedestrians. Average

square of the magnitude of the jerk J and average distance ∆ of a pedestrian from the group centroid for

ko = 0.5 (dashed), ko = 1 (solid) and ko = 1.5 (dash-dotted).
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Figure 3.12: Effect of α on the pedestrian trajectories. The path followed by a pedestrian passing through

the sequence of way-points A-B-C-D, for different values of the parameter α.
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Group A

Group B

Figure 3.13: Scenario II of D2.1: Initial configuration of the two groups.

3.4 Comparison with the SFM at the Museum

We now discuss the benefit of the proposed HSFM in comparison with the SFM results presented in the de-

liverable D2.1, here succinctly reported for reference. The considered environment is composed of two com-

municating rooms, each of which contains four artworks on display. Three doors connect the rooms with the

rest of the museum (see Figure 3.7). The objective of the pedestrians is to visit a selection of the pieces of the

exhibition in a given order, while avoiding collisions with obstacles and/or other individuals. Once the visitors

reach the selected artwork, they stop in front of it for a predefined amount of time, before moving to the next

point of interest. This experiment, very similar to Scenario I of deliverable D2.1, has already been presented in

Sec. 3.2, where it is shown that the introduction of group cohesion forces is able to effectively keep the group

together.

Additional simulations involving more than one group, have been performed. The same experiment described

in Scenario II of deliverable D2.1 has been replicated. In this case, two groups (named A and B), with 10

visitors each, walk in the museum, entering from two different doors, as shown in Figure 3.13. About 35

seconds later, the two groups simultaneously try to traverse (in opposite directions) the passage joining the two

rooms (see Figure 3.13). In the deliverable D2.1 it was shown that the trajectories generated according to the

traditional SFM result in a jam which causes a dispersion in the two groups (see Figure 3.14). On the contrary,

the new kinematic model embedded in the HSFM, together with the group cohesion forces (with parameters

kg1 = kg2 = 200 N in (2.19) and (2.20)), preserve the group cohesion after traversing the passage between the

two rooms (see Figure 3.15), resulting in amore natural group behaviour.
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(a) t = 35 s

(b) t = 60 s

(c) t = 70 s

Figure 3.14: Scenario II and the SFM reported in D2.1: Three snapshots of the simulation taken at different

time instants.

32



ACANTO

(a) t = 35 s

(b) t = 60 s

(c) t = 70 s

Figure 3.15: Scenario II IN D2.1 with the HSFM: Three snapshots of the simulation taken at different time

instants.
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A

B

3.3 m

9 m

Figure 3.16: Experimental area and initial condition for Study 2 of D2.1, Sec. 4.2.

3.5 Comparison with Behavioural Dynamics

In this section, we evaluate the ability of the developed HSFM to reproduce the results of two experimental

studies reported in previous deliverable D2.1 - “Human motion models (preliminary)”. In particular, the pur-

pose of the second study (Study 2 in D2.1, Sec. 4.2) was to investigate the reaction of a pedestrian to movements

of another one. Specifically, that experiment was carried out in order to observe pedestrian A’s behaviour when

requested to walk towards the target agent (pedestrian B) who changed his position during A’s motion.

The experiment was performed in an area of 9.0 × 3.3 m2. Pedestrians A and B were positioned in front of

each other, at a distance of 9 m, in the middle of the shortest edge of the arena (see Figure 3.16). At time t = 0,

pedestrian A started to move towards B. After a time gap ranging from 1 to 5 seconds, pedestrian B started

to move from its position to one of the two sides of the experimental area, until he reached the limit of the

arena (see Figure 3.17-(c)). Both the time gaps and the side to which pedestrian B had to move were randomly

chosen.

As reported in D2.1, that study did not show a significant difference in participants’ performance in relation

to the side to which the target pedestrian moved. On the contrary, it highlighted a linear dependence between

the participants’ walked time (defined as the time at which the participant’s trajectory begins deviating from a

straight line) and the time gap after which the target pedestrian begins to move. It was observed a delay in the

onset of participants’ reaction that ranged from 2.2 s (for a time gap of 5 s) to 3 s (for a time gap of 1 s). For

example, this means that if the target starts to move at time t = 1 s, then the pedestrian begins changing its

direction at time t = 4 s (i.e., the walked time is 4 s).

In order to evaluate the capability of the HSFM to reproduce the behaviour observed in this experimental study,

a simulation campaign consisting of 1000 runs has been performed. The radius and the mass of each pedestrian
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(a) t = 0 s t = 3 s t = 9 s

Figure 3.17: Three snapshots of a simulation run.

have been randomly generated in the intervals [0.25, 0.35] m and [60, 90] kg, respectively, assuming uniform

distributions. Moreover the desired speed of the pedestrians have been generated randomly with uniform dis-

tribution in the interval [1.1, 1.3] m/s. All the other parameters of the model have been chosen as reported in

the beginning of this Chapter 3. Obviously, being the model completely symmetric, there is no difference in

the performance in relation to the side to which pedestrian B moves. Moreover, as shown in Figure 3.18, the

delay in the onset of the reaction of A to the movement of B grows approximately linearly with the time gap,

in agreement with what was observed in the experimental study. Different simulation runs have been repeated

by using different values for a parameter of the HSFM, namely, the characteristic time τ (see (2.12)). It is a

measure of how fast the pedestrian velocity changes as a result of the social forces acting on it (the lower the τ ,

the more reactive the pedestrian). Values of τ ranging from 0.5 s to 3 s were tested. As shown in Figure 3.19,

the average walked time increases with τ and it grows linearly with the time gap for each value of τ . In par-

ticular, when τ = 3 s, the delay in the onset of the reaction of A to the movement of B is now about 3 s for a

time gap of 1 s, and grows linearly with the time gap, decreasing of about 0.2 s for each step of the time gap,

which is exactly what was obtained from experimental evidence in D2.1. These results, although by no means

exhaustive, confirm the accuracy of the trajectories generated by the developed HSFM.

In the other experimental study presented in D2.1 (see Study 1 in D2.1.1, Sec. 4.2), a participant had to walk

towards a fixed target while two actors were coming towards him from the opposite direction. The objective

was to observe participants’ behaviour at the point of interaction. Specifically, whether the participant passed

either on one side (left or right) or between the two actors was taken into account. Results showed that in a large

experimental area, several times the participants decided to pass through the pair of actors which corresponds

to a sort of optimal trajectory (minimum length trajectory). In a smaller arena, the participants clearly preferred

to avoid the pair of actors by deviating on the right from the optimal trajectory, in agreement with the cultural

average avoidance side. By replicating this experiment with the proposed HSFM, it turns out that, no matter the

size of the experimental area, whenever the starting point of the participant is between the position of the actors,

the model makes the participant pass through them. This shows an expected limitation of current version of the

proposed model, which does not embed cultural and social conventions yet.
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Figure 3.18: Walked time of pedestrian A as a function of the time gap between the start of pedestrian A and

the movement of pedestrian B, with two different characteristic times τ . The red line represents the median,

the upper and lower edges of the blue box the 25th and the 75th percentile respectively and the black whiskers

extend to the most extreme data points.
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Figure 3.19: Mean walked time of pedestrian A as a function of the time gap between the start of pedestrian A

and the movement of pedestrian B for different values of τ .
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3.6 Comments

In this deliverable section the Headed Social Force Model and its characteristics have been presented and dis-

cussed in details. It has been shown that the HSFM enhances the traditional Social Force Model with the

inclusion of the pedestrians’ heading. A more complex model of the human dynamics is adopted, whose in-

puts are computed as suitable functions of the force terms resulting from the traditional Social Force Model.

An optional force term has been introduced in order to model pedestrians moving together as a group. Nu-

merical simulations show that considering the heading of the individuals improves the realism of the resulting

trajectories, in both low pedestrian density scenarios and crowded environments.

The Headed Social Force Model developed in WP2 will be used within the ACANTO project to simulate

pedestrian dynamics in the envisaged use cases. The inclusion of pedestrians’ heading, as well as the addition

of a force term for modelling the dynamics of people moving in a group, increase the flexibility and realism of

the traditional SFM model. Ongoing work is focused on setting up a systematic procedure for tuning the model

parameters, depending on the typology of pedestrians at hand (e.g., young people, fully autonomous seniors, or

even older adults pushing the FriWalk). It is expected that a proper selection of the parameter values will allow

the model to reproduce a variety of behaviours ranging from people taking a stroll to individuals walking in a

hurry.
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Chapter 4

On-the-fly Group Abstraction

Optimising the motion of groups of agents scales exponentially with the number of agents, so in D5.1 we

proposed the use of a group abstraction social force model, to avoid the combinatorial complexity. Having

now developed and tested the idea, in this chapter we report results of applying group abstraction to a dataset

obtained by observing pedestrians in a crowded hotel lobby (ETH Zürich BIWI Walking Pedestrians dataset1).

4.1 Background

The ACANTO Reactive Planner draws on the architecture and technology of the ‘short term planner’ developed

in the DALi project [11]. In DALi the short term planner is user-centric and essentially selfish. Visual sensors

attached to the user’s walker locate the user, fixed objects and pedestrians in the local environment. Then, using

the “predictor-corrector” architecture shown in Fig. 4.1, the short term planner suggests an instantaneous di-

rection that approximately maximises the probability of satisfying the users objectives, but without considering

the objectives of other pedestrians, who might also be using the DALi platform.

Sensor Board

Social Force

Model

Statistical

Model Checker

Suggested

Motion

Global

Objectives

Sensor

Processing

Sensors

actual motion

plausible paths

current state

Reactive Planner Board

Figure 4.1: Common short-term / Reactive Planner architecture.

In the cases of both DALi and ACANTO, the position and (possibly zero) velocity of objects in the environment

are identified by the sensors and used to parametrise the human motion model, i.e., the SFM, that uses stochas-

ticity to account for unpredictable behaviour. In DALi, given this current snapshot of the dynamic environment,

the short term planner stochastically simulates multiple future trajectories of the model up to some time hori-

zon, given different hypothesised initial directions of the user. Each trajectory is validated against the user’s
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objectives and thus the planner is able to estimate the probability of success for each hypothesised direction.

The direction suggested to the user is that which both maximises the probability of success and minimises the

deviation from a direct path to the next waypoint.

ACANTO is focused on social activities with groups, so the ACANTO Reactive Planner explicitly considers

group motion. In contrast to the DALi short term planner, the ACANTO Reactive Planner must therefore

optimise the motion of groups of users with respect to their personal objectives and with respect to group

(social) cohesion. Sensor information obtained by each FriWalk user is curated and shared with the other users

of the ACANTO platform, effectively giving each FriWalk a much wider view and much more data to handle.

A naive extension of the DALi short term planner to optimise the trajectories of all FriWalks with respect to

each other incurs an exponential increase in complexity because we must hypothesise the possible actions of

one FriWalk with respect to the possible actions of all other FriWalks.

To address this problem we construct a group abstraction of a crowded environment, taking advantage of the

well known phenomenon that pedestrians tend to move in groups and synchronise their motion, even if not

known to each other. Such groups are not necessarily related to the notional group of participants in an activity,

but are created spontaneously when pedestrians negotiate a crowded environment [25]. These de facto groups

are strongly predictive of human motion in the short term, with pedestrians essentially maintaining their relative

positions within the group. Hence we may model the behaviour of such groups as a single entity and make the

reasonable assumption that individuals will walk in semi-rigid formation. Note that we do not enforce such

rigid formations, but merely use this assumption to predict short term future behaviour, for the purpose of

estimating the probability of satisfying objectives. The pedestrians are completely free to move around within

the group or to leave the group entirely.

For medium to long term prediction we need to know the intentions of pedestrians. That is, we need to know

where they’re trying to go and with whom they’re travelling. This information is well defined for participants of

an ACANTO activity, but not for unknown pedestrians. We therefore observe the past behaviour of pedestrians

to infer their future behaviour, using the notion of a pedestrian’s trace.

The frame rate of our visual sensor technology makes it conceivably easy to infer the traces of pedestrians

at a visual level, however there will inevitably be natural occlusions that prevent long term visual continuity.

Combining the output of sensors on multiple FriWalks incurs the additional challenge of identifying pedestrians

who leave the view of one sensor and appear in another. Pedestrians may also appear and disappear as a result

of sensors being obscured, because of communication unreliability or because users just leave. Our trace

inference algorithm, described in Section 4.1.1, therefore makes use of a human motion model to reliably link

the behaviour of pedestrians over much longer times than that between successive video frames. The presented

trace inference algorithm (Algorithm 1) makes minimal a priori assumptions about its input, but in practice will

take advantage of whatever other information is available (e.g., high reliability visual continuity).

Having inferred a set of traces from multiple observations of agents in the environment, it is necessary to infer

their de facto groups. Instantaneous physical proximity is not a sufficient indicator, since two close pedestrians

could actually be trying to get away from each other. Our group inference algorithm (Algorithm 2) thus uses a

notion of proximity that includes both position and velocity: if pedestrians are physically close, walking at the

same speed in the same direction, it is reasonable to assume (by definition) that they are walking together. To

find an optimal partition of traces into groups, our algorithm uses k-means clustering [36]. The full technical

aspects of are outlined in Section 4.1.2.

Identifying de facto groups allows us to plan motion at a more efficient level of abstraction. When hypothesising

the alternative directions for a number of users of the platform, we believe that it is a reasonable compromise to

only hypothesise the overall motion of the groups to which they belong. We feel it is not necessary to consider

all the possible combinations of suggestions to those within the same group given that, by virtue of how we

define a group, their motion is strongly correlated. Note that suggestions are nevertheless tailored to the actual

position of an individual within the group, in order to maintain its “social” structure.
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4.1.1 Trace inference

Our trace inference algorithm (Algorithm 1) constructs sets of active and inactive traces, where a trace is

a sequence of timestamped observations of the position and velocity of pedestrians detected by the sensors.

Active traces are those for which the algorithm has reliably inferred continuity and/or there is currently a

pedestrian in the field of view of the sensors (a trace may consist of a single observation). Inactive traces are

those for which the algorithm could find no valid continuation, so there is no current view of the corresponding

pedestrian. Since inactive traces do not contain a current point, further trace inference applies only to active

traces. In practice a trace may become inactive due to the obfuscation of a sensor or failure of communications.

Our algorithm assumes that the human motion model makes valid predictions up to a maximum time interval

of ∆tmax , hence traces whose endpoints are older than this become inactive.

The initial set of active traces comprise the initial set of observations, while the initial set of inactive traces is

empty. Each step of the algorithm appends new observations to active traces or starts new active traces with

single observations that cannot be assigned to existing active traces. Active traces to which no new point can

be assigned become inactive once their endpoint is older than ∆tmax with respect to the current time. Using

the human motion model, each iterative step of the algorithm generates a set of projections to the current time

from the the endpoints of the active traces, then tries to match the projected points to the new observations by

finding a minimum distance assignment according to distance metric Dtrace (see Section 4.2.2).

To solve the assignment problem of optimally matching new observations to projected points, our implementa-

tion makes use of an O(n3) implementation of the Hungarian method [33]. We first construct a square matrix

of distances between projected points and the new observations, according to distance metric Dtrace . The

numbers of projected points and active traces may be different, so the smaller of the two sets is padded with

dummy entries whose distance to all members of the other set is, by convention, made equal to the maximum

observed distance between non-dummy entries. The Hungarian method is guaranteed to find an assignment

that minimises the overall distance between the projected points and new observations, but not all individual

assignments are close enough to be accepted and some assignments include non-existent (dummy) entries. Ob-

servations whose assignment has a distance up to threshold θtrace are appended to the ends of the corresponding

active traces. Observations whose assignment has a distance greater than θtrace become the initial points of new

active traces. Assignments involving dummy entries are discarded.

4.1.2 Group abstraction

To infer groups we use k-means clustering [36] over the set of active traces. The k-means algorithm partitions

a set of n ≥ k data points into ≤ k clusters, according to a specified metric over the points. Although the

k-means problem is computationally hard, there are good heuristics that make it expedient for our on-the-fly

inference application (e.g., the k-means++ algorithm [5] of the Apache Commons Math library1).

Given a specified value of k, the k-means algorithm first defines a set of tentative cluster means (centroids).

This may be done randomly or heuristically. It then executes a series of alternating assignment and update

steps that (re-)allocate points to clusters, until further steps produce no modifications. Assignment steps assign

data points to clusters with the nearest mean, according to a problem-specific distance metric. Update steps

re-calculate the means of the clusters. The k-means algorithm is guaranteed to terminate, however the results

are generally local optima that are dependent on the initialisation. Heuristics therefore focus on finding good

initialisations.

To find an optimal group abstraction we first define a group distance metric, Dgroup , and define a group cohesion

threshold distance, θgroup > 0, that specifies the maximum permissible distance from the centroid of a group.

Note that the group distance metric is more concerned with similar motion than physical proximity, so being

close to the centroid implies primarily that members of the group are moving in the same way. We do not know

1commons.apache.org/proper/commons-math/
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Algorithm 1: Trace inference

LetH be the human motion model

Let Act be the current set of active traces (initialised with the first set of observations)

Let Inact be the current set of inactive traces (initially empty)

Let ∆tmax the maximum trace projection time

Let Dtrace be the trace matching distance metric

Let θtrace be the trace matching threshold distance

while there are new observations do
Let Obs be the set of new observations at current time t
Let Old ⊆ Act be the set of traces whose end points are older than t−∆tmax

Act ← Act\Old

Inact ← Inact ∪Old

Let Proj be the set of points generated by projecting the ends of all traces in Act to time t using H
if |Obs| < |Proj | then

Pad Obs with dummy entries so |Obs | = |Proj |

else if |Proj | < |Obs | then
Pad Proj with dummy entries so |Obs| = |Proj |

Construct a square matrix Dist of distances between Obs and Proj using Dtrace

(set the distance to or from any dummy entry to be the maximum non-dummy distance)

Apply the Hungarian Method to Dist to find a minimum distance set of assignments Assign

Remove from Assign all assignments involving dummy entries

for ((trace , projection), observation) ∈ Assign do

if Dtrace(projection , observation) ≤ θtrace then
Append observation to trace

else
Add observation to Act
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in advance the optimal number of clusters (i.e., the optimal value of k), so we iterate from k = 1 to k = |Act |,
where Act is the set of traces to cluster, stopping when the set of clusters are sufficiently cohesive. For the

purposes of efficient motion planning we would like k as small as possible, so the algorithm aims to find the

fewest number of sufficiently cohesive clusters. To judge the cohesiveness of a cluster, the algorithm calculates

the distance between each member and the cluster’s centroid using Dgroup . If any member of any cluster is too

far from its corresponding centroid, the current set of clusters is abandoned and a new set is generated using

k ← k + 1. The algorithm is guaranteed to terminate because when k = |Act |, all clusters contain a single

element whose distance from their corresponding centroid is guaranteed to be < θgroup .

Algorithm 2: Group inference

Let Act be the set of active traces

Let Dgroup be the group distance metric

Let θgroup be the group cohesion threshold distance

Set done ← false

Set k ← 1
while ¬done ∧ k ≤ |Act | do

Perform k-means clustering on Act

Let Clust be the resulting set of ≤ k clusters of traces

done ← true

for cluster ∈ Clust do
Let centroid be the centroid of cluster

for trace ∈ cluster do

if Dgroup(trace , centroid ) > θ then
done ← false

return Clust

Although the k-means algorithm partitions data points into Voronoi cells that are disjoint in the multi-dimensional

space of the distance metric, groups may physically overlap. This arises, for example, when two groups walk-

ing in opposite directions pass through each other. This phenomenon does not occur at the level of individuals

and is therefore not considered in the original social force model, however it is nevertheless possible to model

it with forces in the SFM framework. To do this we reduce the repulsive social force between the groups (f soc

in (2.2)) and use the physical component (fph in (2.2)) to model the “friction” between them. To accurately

model the momentum of different sized groups, the mass term (m in (2.1)) will be the sum of the masses of

the individuals. The latency parameter (τ in (2.1)) is also likely to be greater for groups, however some of the

latency is simply accounted for by the increased mass.

Figure 4.2 illustrates an hypothetical scenario of groups diverging and coalescing over time, noting that these

phenomena are also evident in the automatically-generated visualisations of the output of our on-the-fly algo-

rithms applied to real observations. The groups labelled 1, 2 and 3 are assumed to comprise a single pedestrian.

Group 4 contains two pedestrians who initially just happen to be walking close to one another in the same

direction. Pedestrians 1 and 3 know each other, so they move closer and eventually form group 5. Pedestrian

2 knows one of the members of group 4, so they also move closer to one another and eventually form group

6. The other member of group 4 is just passing through and eventually leaves the view of the sensors (smaller

dashed circle). At some time before then, however, he gets very close to pedestrians 2 and 3 (in the region

denoted by the larger dashed circle), but no new group is detected because they are all travelling in different

directions. The members of groups 5 and 6 are actually part of the same activity, so the system guides them

closer, thus eventually forming group 7.
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Figure 4.2: Groups diverging and coalescing.

Graph-theoretic group behavioural templates

The SFM uses stochasticity to model unpredictable behaviour, but previous work [9] has identified “behavioural

templates” that can deterministically account for certain types of non-smooth interactions between pedestrians.

Replacing stochastic uncertainty with deterministic templates can potentially improve the predictive power and

efficiency of the human motion model. In the present context we are particularly interested in predicting when

and how groups may pass by, split or pass through each other. Such behaviour does not, of course, apply to

individual pedestrians, but is common with groups of pedestrians. For example, Figures 4.4 and 4.6 illustrate

apparently similar scenarios where one moving group chooses to split to avoid a collision with a stationary

group (Figure 4.4), while a similar moving group chooses to stay together to avoid the same stationary group

(Figure 4.6). We propose to use graph-theoretic metrics of clustering, cohesion and centrality (see, e.g., [43,

Chap. 7]) to identify the conditions under which the different group behaviours are likely and to identify if

and how groups will fragment. Such graph-theoretic metrics are efficient to calculate, with minimal additional

computational cost above the inherent cost of the SFM and k-means clustering.

4.2 Modelling real pedestrians with Group Abstraction

In this section we give results of applying our on-the-fly algorithms to the ETH Zürich BIWI walking pedes-

trians dataset1. We thus demonstrate how our approach infers traces and groups from observations of real

pedestrians and justify its use as a means to simplify motion planning of groups or individuals in complex

crowded environments.

4.2.1 Dataset

The chosen dataset comprises hand-annotated motion-capture observations of pedestrians in two environments:

a hotel lobby and a corridor within the ETH premises. The annotations link the observations into traces and

groups, which our algorithms do automatically. We make use of the original annotations only to compare

with the automated annotations, noting here that our on-the-fly algorithms successfully identify all the traces

and groups identified by hand. In both environments the observations are made using a fixed camera directly

overhead, with an original video frame rate of 25fps (0.04s between frames). Here we focus on the hotel data,

which contains more interesting and varied interactions between pedestrians. In what follows we thus use the
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term ‘dataset’ to refer exclusively to the hotel data.

The dataset contains observations sampled at 2.5fps (0.4s), with observations divided into 27 contiguous inter-

vals separated by more than 0.4s. We suppose that the times not covered in the dataset are excluded because

they contain no moving pedestrians, however we believe that some of the omitted frames nevertheless con-

tained stationary pedestrians. Moving pedestrians must avoid stationary pedestrians, so for the purpose of

motion planning they cannot be ignored. We illustrate this is in the results described below.

4.2.2 Distance metrics

The presented results make use of two different distance metrics that are based on both position and velocity.

In the case of the trace inference algorithm (Algorithm 1), to decide whether a projected point is “close” to an

actual observation the metric Dtrace is based on Euclidean distance in the 4-dimensional space of (x, y) position

and discounted (x, y) velocity. Precisely, we divide the velocity dimension by 2, thus making position more

significant than velocity when inferring traces. The value of 2 was chosen empirically and found to work well,

but is not critical. Projected points have an implicit velocity that should be similar to that of the observation, but

giving too great an emphasis to velocity-matching risks erroneously cross-linking the trajectories of pedestrians

walking in formation.

In the case of the group inference algorithm (Algorithm 2), the metric Dgroup is based on Euclidean distance in

the 4-dimensional space of discounted (x, y) position and (x, y) velocity. Hence, in contrast to trace inference,

we make velocity more significant than position to infer groups using k-means clustering. To justify our group

abstraction motion planning, we require that pedestrians in a group are moving in a similar way, hence velocity

is clearly important. We also require that pedestrians in a group are proximal, but this is less important. A

discount factor of 2 was, once again, found empirically to be good and not critical. In fact, we achieved very

similar results with no discounting and usable results when we discounted velocity instead of position.

We note here that our chosen distance metrics are “memoryless”, meaning that they consider only the instan-

taneous position and velocity of pedestrians. We make this choice simply for the purpose of exposition—the

visualisations thus show how our algorithms interpret the instantaneous behaviour of the pedestrians. In prac-

tise, however, we believe that it will be beneficial to use “history-dependent” metrics that include the previous

position and velocity of pedestrians. Thus, for example, two pedestrians would be considered closer with re-

spect to grouping if they were grouped immediately before. This approach smooths out (avoids) the case of

groups appearing to momentarily split and motivates the need to link observations into traces.

4.2.3 Results

Figures 4.3, 4.4, 4.5 and 4.6 visualise traces and group abstractions for four intervals from the dataset, produced

automatically by our on-the-fly algorithms. The x and y axes give the spatial coordinates (in metres) of the

groups, with respect to the origin defined in the dataset. The traces inferred by our algorithm are denoted by

black lines, marked at their start by blue discs and at their end by red discs. Each black circle denotes an

inferred group at a particular time point. A (trivial) group may consist of a single pedestrian (the smallest

circle). Most non-trivial groups in these figures consist of pairs of pedestrians (medium-sized circles), with

group containing three pedestrians (largest circle) evident in only Figures 4.3 and 4.4. No groups greater

than three pedestrians were identified by the original hand-annotations of the dataset, nor by our automatic

annotation. The relative proportions of group sizes in both annotations are consistent with long-standing group

size distribution results [25]. Note that the figures abstract away from time, such that the starts and ends of

different traces are not necessarily synchronous, while crossing traces do not necessarily imply a collision.

Figure 4.3 The figure visualises an interval of 47.6 seconds starting at time 34.8 seconds with respect to the

first frame of the dataset. The traces and groups identified by our algorithms include all those identified in the
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Figure 4.3: Group abstraction of interval 3 of hotel dataset (34.8 to 82.4s).

hand annotation of the original dataset, as well as other groupings that are useful for motion planning. In par-

ticular, our algorithms identify stationary groups near coordinates (−1.7, 1.1), (−2.1,−2.3) and (−1.4,−7.4),
where the “group” near (−1.4,−7.4) is a trivial group comprising a single pedestrian. We illustrate the effect

of stationary groups on moving groups in Figures 4.4 to 4.6, which are described below.

Figure 4.4 The figure visualises an interval of 8.4 seconds starting at time 110.8 seconds with respect to the

first frame of the dataset. We first note a stationary group around coordinate (1.5,−9). Not apparent from the

figure, they first appear at 113.6 seconds and (approximately) maintain their positions for 5.6 seconds until the

end of the interval. Since both their positions and motion are very close, our algorithm correctly identifies these

pedestrians as a group. In the original dataset, however, they are not identified as such. We observe that the

existence of this stationary group has a significant effect on the motion of the group starting near coordinate

(2.3, 3.3). For some reason, the moving group heads directly towards the stationary group and then splits near

coordinate (1.7,−4.5) to avoid a collision. Importantly, however, up to the point at which the group splits,

the group abstraction of the two moving pedestrians provides a good prediction of their behaviour. Following

the split, the group abstraction continues to provide a good prediction of the moving pedestrians’ behaviour

because it detects that they are no longer moving together. The other groups in this figure, within the box

created by x ∈ [2, 4] and y ∈ [−8,−3], are not identified by the hand-annotation of the original dataset, but are

nevertheless valid and useful for the purposes of motion planning.

Figure 4.5 The figure visualises an interval of 23.2 seconds, 58 seconds after the interval illustrated in Fig-

ure 4.4. We see that there is once again a stationary group near coordinate (2.8,−6.9), which is not identified

in the hand annotations. Given that this group also exists in the the three intervening intervals between those of

Figures 4.4 and 4.5, we presume that it is the same group. We do not make use of this fact here, but such in-

formation can be useful in predicting the intentions of pedestrians. The instantaneous intentions of pedestrians,

required by the driving or desired velocity term v0 in (2.1), may not reflect the known medium term objectives

of known pedestrians and are even more difficult to infer if the pedestrians are unknown to the system. Knowing

that an observed group is more than just instantaneous and ad hoc can therefore help to improve the inference.

The motion of the group starting near coordinate (2.9,−9.5) is interesting in comparison to the long group

trajectories in the other figures. In this figure the pedestrians are walking slower (closer observations made at
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Figure 4.4: Group abstraction of interval 6 of hotel dataset (110.8 to 119.2s).

the same frequency as the other figures), closer together and while not following a smooth path, they appear to

very closely maintain their separation distance. We might infer from this that they have a strong social bond.

From the perspective of motion planning they are effectively moving as a single agent, thus fully justifying the

group abstraction.

Figure 4.6 The figure visualises an interval of 8.8 seconds, 26.8 seconds after the interval illustrated in

Figure 4.5. The stationary group seen in Figures 4.4 and 4.5 seems also to be present in this interval, however

the group first appears at time 232.8 seconds, 5.6 after the beginning of the interval, and is not present in

the single interval between those illustrated in Figures 4.5 and 4.6. From only the recorded observations in

the dataset, we cannot disambiguate the possibilities that the group moved away and then returned to the

same spot, that the camera was temporarily obscured or that there was a data processing error. Temporary

occlusions and measurement errors are to be expected, especially when inferring a global view from ground-

level cameras mounted on individual FriWalks in the case of ACANTO, and do not invalidate the approach

unless the occlusions and errors persist indefinitely.
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Figure 4.5: Group abstraction of part 10 of hotel dataset (177.2 to 200.4s).
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Figure 4.6: Group abstraction of part 12 of hotel dataset (227.2 to 236s).
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Chapter 5

Relation with the other Work Packages

In what follows, we propose a collection of potential links other work packages could benefit from.

The results gained in this deliverable are beneficial, to some extent, to the work carrie out in WP3 - “Perception

of Users and Environment”, in particular to what concerns the collaborative platform localisation and for the

interpretation of the social context. Indeed, for collaborative localisation (Task 3.1.3), the knowledge coming

from the way in which human beings move as a social group in the environment helps in identifying which

sensor can be used to detect other persons in the group and, hence, increase the robustness and accuracy of the

collaborative localisation algorithm. In the other direction, the high level knowledge of social groups obtained

in WP3 can be used to inform the human motion model and group abstraction algorithm about pedestrians’

intentions.

Moreover, the model of motion of social groups, from a geometric view-point, helps in the interpretation of

the social context (Task 3.3). From the platform view (Task 3.3.1), the motion and the trajectory about the

behaviour of each individual is fundamental for the learning of the high-level behavioural models as well as

model the dynamics and the social relationships between the people in the scene. In particular, the knowledge

gained in this deliverable helps in monitor the activities of people (individuals and groups) and the roles they

play in the scene (leaders, followers, etc.), and analyse the group dynamics by estimating the group cohesion.

Furthermore, since Task 3.3.2 deals with the interpretation of the site-wide social context, the knowledge of

the motion models is the basic pillar to identify the behaviour of crowds in terms of forming, movement, and

disaggregation. There is thus also scope for cross-fertilisation between WP3 and the graph-theoretic metrics

we use to infer group structure.

WP5 - “Execution Support of Social Activities” is the principal beneficiary of the results of this deliverable

and, in particular, the Reactive Planner of Task 5.2. The Reactive Planner makes extensive use of the human

motion model, while our group abstraction approach is specifically intended to increase its efficiency. Besides

the possibility of planning deviations for individuals according to the crowd density in the surroundings (hence,

embedding the blend between the SFM and the nonholonomic behaviour), when the Reactive Planner works for

group of users and respect their roles inside the group. Notice that the choice of modelling the group cohesion

by means of a cohesive force reduces the complexity of the Reactive Planner, that has to plan just for the group

centre of mass to steer the whole formation on the planned deviation. The found models are also important

to identify the presence of other pedestrians or other group of pedestrians and then predict their motions and

reactions to the re-planned paths.

The notion of the motion models, for individuals and groups, is also of paramount importance for the Activity

Planner (Task 5.1), which is responsible to produce a concatenation of control actions to carry out correctly an

activity. For instance, the knowledge gained on the nonholonomic behaviour is applied directly to the planner

to generate paths that satisfy such a constraint by construction. Moreover, the size and density of the group and

the type of activity may affect the optimal paths generated by the planner in case of group activity.

Finally, the models here described are tightly connected to the monitor of the activities (Task 5.3). In fact, the

49



ACANTO

role of the monitor is to evaluate the compliance of the plan with the requirements at the individual level and,

when required, at the social level. The knowledge of the motion models allows the detection of misbehaving or

uncooperative group members, and hence generate a failure for the individual and/or group activity.

Since the individual or group motion patterns have an impact on the manoeuvres the FriWalk has to generate,

the findings of this deliverable will define the motion patterns considered as in put in WP6 - “Design of Robotic

Personal Devices”. This connection is mainly enforced by the role of Task 2.3, i.e. the bridge between the

models and the control actions.
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