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Abstract— Service robots are increasingly applied in real
life environments populated with human beings. In such a
challenging scenario, the autonomous robots have to avoid
collision in a “natural” way, that is to execute trajectories that
a human would follow. This challenging goal can be efficiently
tackled if a sufficiently descriptive human motion model is
available, in order to predict future pedestrian behaviour and
hence safely planning the correct route. In this paper, we move
a first step towards a motion model that is able to describe
to a certain extent the nonverbal negotiation of spaces in
shared environments, still preserving its simplicity for ease of
computation. The avoidance task is shared among the robot
and the pedestrians and thus human-like trajectories can be
generated. Simulations and application to actual pedestrian
data are presented to validate the model.

I. INTRODUCTION

One of the main problems for ground service robots that
is currently asking for affordable and effective solutions is
the synthesis of safe motions in environments shared with
human beings. In this context, collision avoidance trajectories
to ensure a safe human interaction are becoming an aspect
of particular relevance in order to let robots to navigate with
a human-like behaviour that persons can easily interpret [1],
[2], [3]. An example of this kind is given by the European
project ACANTO [4], where the FriWalk (see Figure 1-a),
a standard commercial walking aid endowed with sensing
abilities to understand the surroundings and localise in the
environment [5], [6], [7], with guidance abilities to drive
the user in the surroundings [8], [9], [10] and with planning
abilities to produce safe paths in the environment [11], [12],
is used as a navigation aid for seniors. One of the most
important features of the FriWalk is its ability to respond to
unforeseen events along the execution of the planned path,
such as the presence of bystanders or walking pedestrians.
To this end, predictive models are considered. The current
reactive planner [13], [14] running on the FriWalk is based on
the Headed Social Force Model (HSFM) [15], an extended
version of the rather famous Social Force Model [16] that
explicitly considers the pedestrians’ heading to increase its
modelling potentialities. The limit of such an approach is that
the avoidance manoeuvre is currently entirely responsibility
of the robot, while the human is assumed to be completely
unaware [13], [14].
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Fig. 1. (a) The FriWalk with a senior. (b) IPS shape according to [2], with
characteristic sizes, and the neighbours for pedestrian i. Blue pedestrians
are inside the IPS at time t, so they belongs to Ni(t), orange ones are out
of scope.

This paper lays down the main conceptual modelling
aspects to be applied on the planning or reactive control for
a service robot, which the FriWalk is the most immediate
application example. The idea is to propose a computation-
ally simple predictive model (in order to be executed on-
line on-board the available embedded computing platforms)
that catches the action and reaction behaviour of nonverbal
humans’ space negotiation for effective and more “natural”
reactive collision-avoidance behaviours. The proposed Pre-
dictive Headed Social Force Model (PHSFM) implements a
geometric method able to improve the reactive approach of
common social force models and additionally implement a
predictive behaviour. In fact, pedestrians don’t simply react
to interactions with neighbours, but actively predict the most
appropriate way to avoid collisions respecting others personal
spaces [17].

This paper is organised as follows. Section II presents a
detailed analysis of the state of the art. Section III gives an
overview and explains the rationale of the model proposed
in this paper, while Section IV precisely discusses its details.
The results based on the proposed model are offered in
Section V and Section VI, where both simulations and
validation analyses on actual pedestrian data are reported.
Finally, in Section VII we summarise the benefits and the
novelties of the proposed model, together with concluding
remarks and future research directions.

II. RELATED WORK

There are two main approaches for human motion predic-
tion: learning and reasoning. In learning-based techniques,
e.g. [3], predictions are grounded on observations. Despite
the proven effectiveness of learning-based methods, almost



all of these methods require extensive off-line training and
consequently the variety of the behaviours that can be
emulated is limited by the size of the database. In reasoning
(or model)-based prediction, e.g. [18], the behaviour is deter-
mined on a-priori assumptions on geometric considerations
and typical motion velocity. A simple, yet not effective, way
to predict human motion is by using a linear model where
human trajectories are formed by mostly straight lines, as
used in Velocity Obstacle (VO) local planner [19], [20],
where avoidance manoeuvres are planned by selecting the
robot velocities outside the velocity-based “collision cone”.
Although computationally efficient, it is unclear whether
humans do follow model-based precise geometric rules. In
particular, the force parameters often need to be tuned indi-
vidually, and can vary significantly for different pedestrians.

Several model-based solutions adopt the SFM [16] due
to its simplicity and effectiveness (see for instance [11]).
However, adopting the SFM as is does not prevent collisions
between agents [21]. In particular, [22] pointed out that the
presence of reactive forces in the SFM leads pedestrians only
to passively avoid collisions, which generates unnatural be-
haviours, to account for they propose an optimal problem. To
incorporate an anticipatory behaviour in the SFM, velocity-
based approaches were introduced: for instance, [23] uses a
power-law interaction that is also based not on the physical
separation between pedestrians and on their projected time
to a potential future collision. The perception of the relative
motion of neighbour obstacles is performed considering
the time-to-collision also in [24], in which the agents are
simulated by minimising the risk of collision.

Previous research on human behaviour helps identifying
key factors affecting human avoidance, among which prox-
emics is one of the most popular and widely accepted [25].
Following the hypothesis of a reciprocal interaction between
two colliding pedestrians, [17] found a temporal structure
of three successive phases: observation of the collision,
avoidance reaction, and path regulation. Moreover, it showed
that human beings adapt their trajectory collaboratively, but
the one giving way (i.e. the second at the crossing) deviates
more than the one passing first. Path adjustments seemed
to be independent by the head rotation or walking speed,
whereas speed adjustments were influenced by different
walking speed [26]. These findings support the assumption
of path adjustments as a default collision avoidance strategy
in the presence of sufficient space and justify the choices
made for the PHSFM presented next.

III. PREDICTIVE HEADED SOCIAL FORCE MODEL

Avoidance mechanism cannot be represented as a re-
active action, because force-based models try to describe
motion directly from the observed movements of pedestrians,
ignoring the internal cognitive processes that lead to the
movements [22]. To improve force-based models, such as
the SFM or the HSFM, an agent is modelled so as to move
in a direction in which there are no obstacles, reducing the
deviations from the direct path to its destination [22], [27],
[28].

In our model we mimic the avoidance manoeuvres per-
formed by pedestrians by directly modifying the desired
speed vdi that in the HSFM model points towards the final
goal. This way, we explicitly compute what is the local
walking direction that pedestrians are supposed to choose,
so instead of being rejected by their neighbours, as happens
in the SFM, they actively seek a free path in order to avoid
collisions. Possible collisions are classified in two general
types, namely passing case and crossing case. Each simu-
lated agent searches for both present and future obstacles
inside his Information Process Space (IPS) [2], computing
also the time-to-collision.

The IPS (Figure 1-b) does not coincide with the personal
space, which instead is a circular-shaped area around the
person used to identify collisions with other pedestrians [25].
Passing case occurs when two or more pedestrians walk
along parallel trajectories; this situation is identified if other
people are present in the IPS or if a collision with another
pedestrian will occur within a time limit. For this case
we adopt the same formulation of [22]; however, we also
consider the repulsive forces of the SFM, since they are
essential to represent the elementary avoidance between
pedestrians. Crossing case occurs when pedestrian walk
along crossing trajectories, that is in our model when the
closest neighbour among those present in IPS has a direction
such that it passes through the IPS middle line. In such a
case, the idea is to assign the desired walking directions
of two interacting agents (robot and human), by computing
the effort that each agent puts in order to avoid the col-
lision. This asymmetrical behaviour, first proposed in [29]
using reinforcement learning, is obtained using geometrical
arguments. Our work constructs a similar function using the
HSFM as a baseline and parametrises this feature with the
minimum number of relevant factors, i.e. the bearing angle
and the two pedestrians’ velocities.

IV. MODEL DESCRIPTION

In this section, we first summarise the HSFM [15], and
then we derive the new added features for the passing and
crossing cases, respectively.

A. HSFM

The HSMF improves the SMF with the inclusion of
pedestrians’ heading to better model the human motion
behaviour when not heavily populated environments are
considered [15]. The position and the velocity of the i-th
individual with mass mi and radius ri, expressed in the
global reference frame 〈W 〉, are respectively denoted by
ri = [xi, yi]

T and vi = [ẋi, ẏi]
T . The equations of motion

according to the SFM are simply ṙi = vi and v̇i =
1

mi
ui,

where ui represent the social force driving the i-th particle.
In order to model the pedestrians heading, it’s convenient to
attach a body frame 〈B〉 to each individual, i.e. a reference
frame centred at the pedestrians position and whose x-axis is
aligned with the pedestrians forward direction of motion. Let
qi = [θi, ωi]

T be the vector containing the heading θi (angle



between the x-axis of the body frame and that of the global
reference frame) and the angular velocity ωi = θ̇i of the i-th
pedestrian. Denote by vBi = [vfi , v

o
i ]
T

the velocity vector
expressed in the body frame. The components vfi and voi of
vector vBi correspond to the projection of the velocity vector
vi along the forward direction and the orthogonal direction,
respectively. Clearly, vi = R(θi)v

B
i , where the 2D rotation

matrix R(θi) of angle θi is defined as

R(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
=
[
rfi r

o
i

]
. (1)

Then the human locomotion model becomes

ṙi = R(θi)v
B
i ,

v̇Bi =
1

mi
uBi ,

q̇i =

[
0 1
0 0

]
qi +

 0
1

Ii

uθi ,
(2)

where Ii denotes the moment of inertia of pedestrian i. In the
model (2), the control inputs are uBi = [ufi , u

o
i ]
T

, with ufi is
the force acting along the forward direction and uoi the force
along the orthogonal direction, as well as the torque uθi about
the axis perpendicular to the plane of motion. In this model,
if we set voi (t) = 0 in vBi and uoi (t) = 0 in uBi , for all t,
the dynamic unicycle model is recovered, hence the model
features a nonholonomic behaviour. The HSFM models the
control inputs ufi , uoi and uθi on the basis of external forces.
The total force fi that acts on the i-th pedestrian is defined
as fi = foi + fei . The first term accounts for the pedestrians
desire to move with a given velocity vector vdi = vdi e

d
i , i.e.

foi = mi
vdi − vi
τi

, (3)

where the characteristic time τi > 0 parameter determines
the rate of change of the velocity vector, vdi and edi are the
desired velocity and the vector toward the desired goal of
pedestrian i. The second term fei is the sum of the forces
generated by the environment, e.g. fixed obstacles, walls,
furnitures, etc., and other pedestrians in the environments.
A natural choice for computing ufi is to project fi along the
forward direction, while uoi is computed by projecting only
the interaction force fei along the orthogonal to the pedestrian
heading, scaled by a gain parameter ko > 0. Moreover, in
order to drive to zero the sideward velocity voi when the
sideward force is zero, a damped dynamic proportional to voi
is added to uoi with a damping parameter kd > 0. The input
uθi has a second order dynamic depending on the constants
kλ > 0 and αλ > 1 shaping its rate of convergence towards
the desired heading. Forces are obtained as in the SFM [16].

B. Passing case

We define Ni(t) as the set of pedestrians inside the IPS
of pedestrian i at time t, namely the neighbours. If nobody
is inside the IPS, we search the ones that will enter in the
personal space dperi of pedestrian i (i.e. collide) within a
time window t < t′ < t + Tc, being Tc the maximum time

Fig. 2. Illustration of desired velocities vseti (red vectors) for passing case
with two gaps k.

for an interaction between agents. So pedestrian i will collide
with the pedestrian j when∥∥rj(t)− ri(t)−

(
vj(t)− vd

i

)
(t′ − t)

∥∥ ≤ dperi . (4)

Their positions at the collision will be the collision points
and, when happening inside the IPS, we have j ∈ Ni(t). The
lines joining the pedestrian i and his neighbours together
with the IPS angular limits form a set of angles θk(t)
(Figure 1-b). If no occlusion between pedestrian occurs, the
number of angles is equal to the cardinality of Ni(t) + 1.

Pedestrian i can choose one slot between two adjacent
neighbours to go through when his original walking direction
is obstructed. If we treat the gap between two neighbours as
a bottleneck, we can make an assumption that the desired
velocity decreases as the gap narrows [22]; pedestrians than
can walk freely with velocity vd

i when the gap is bigger than
a threshold ϑu and almost stop if the latter becomes below
ϑl. According to [28], the relation between desired velocity
vd
i and the sector is an s-curve function (with parameters αp

and βp)

vD
i (t) =

vd
i

1 + exp [(αp − ϑk(t)) /βp]
, (5)

where ϑk(t)

ϑk(t) = −dperk − dperk+1
+

+
√
d2i,k(t) + d2i,k+1(t)− 2di,k(t)di,k+1(t) cos(θk(t)),

(6)
models the size of the gap, and di,k(t) and di,k+1(t) are the
distances from pedestrian i to the neighbours k and k + 1.

The angle between the segment joining pedestrians i and
k and the segment connecting pedestrian i and the goal (i.e.
the direct path) is dubbed γk(t) (see Figure 2). We assume
that pedestrian i will choose for every gap a specific direction
according to his target position and the personal spaces of
his neighbours. If the target is directly reachable using the
gap k, no deviation angle is imposed, i.e. ηk(t) = 0. If
it is reachable but the angle γk(t) (or γk+1(t)) is smaller



then the hindrance angle αk = arcsin
(
dperk
di,k(t)

)
, which is the

projection of neighbour’s k personal space seen by pedestrian
i, we impose a direction at least tangential to that personal
space, i.e. ηk(t) = γk(t) + αk. If the target is not reachable
from the gap k, we directly impose on pedestrian i to
pass close to the nearest neighbour k w.r.t. the target, i.e.
ηk(t) = γk(t) + αk, because pedestrians do not want to
deviate too much from the direct path [28].

Since pedestrians want to get to their destination as soon
as possible, we finally assume that they will choose the
direction in which the projection of their velocity to the direct
path is the maximum. Hence, the following simple discrete
optimisation problem is defined:

argmax
k

vseti (θk(t)),

s.t. vseti (θk(t)) = vD
i (t) cos ηk(t),

(7)

whose solution k∗ gives immediately the modulus
vseti (θk∗(t)) and phase ∠edi + ηk∗(t) of the desired
velocity vdi (t) to be used in the HSFM.

C. Crossing case

In a crossing case, the nearest pedestrian j in Ni(t) will
pass in the middle of pedestrian i’s IPS, assuming a constant
velocity motion. Inspired by [29], first we identify who’s
going to pass in front and who’s going to give way, and
then we compute the avoidance manoeuvres. To this end,
we compute the crossing point time for both the pedestrians,
defined by ti = di/|vi|, tj = dj/|vj |, where di and dj are
the distances from the crossing point. Notice that this is not a
collision point but, instead, a geometric point that allows both
pedestrians to pass untouched along their current trajectories
(Figure 3-a). Then, we find the bearing angle β, which is
the angle between the segment joining the pedestrian i to
the crossing point and the segment joining i and j, positive
if pedestrian j is on the left of pedestrian i. The bearing angle
and the crossing times are used over a generalised logistic
function to find the sharing effort coefficient α, defined as

α(t) = sign (β) sign (ti − tj)
1

1 + exp [−c (ti − tj)]
, (8)

where c is the steepness coefficient. This function, depicted
in Figure 3-b, describes how α(t) may span from 1 (maxi-
mum deviation) to 0 (no deviation at all) depending on the
difference in time between the agents. The rationale is the
following: the more time until the crossing, the lower the
deviation from the direct path is. When times are equal, both
pedestrians have a coefficient of 0.5. Hence, for α(t) ranging
from 0.5 to 1, pedestrian is going to give away to the other:
if so, a deviation angle

η(t) = α(t)ηmaxb
ti , (9)

is chosen to pass behind the other pedestrian, where ηmax is
the maximun deviation angle and b is the decreasing factor.
The sign of α(t) determines the left/right side for deviation
(see also Figure 3). Notice that for α(t) ranging from 0 to
0.5, the pedestrian is going to pass first, hence the deviation
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Fig. 3. (a) Illustration of crossing case. Red mark is the crossing point,
the dashed circles are the pedestrian’s collision points. (b) Sharing effort
coefficient function, with bearing angle β in degree and crossing order.

will be smaller and of the opposite sign of the pedestrian
giving the way (that has α(t) between 0.5 to 1). The absolute
orientation will be ∠edi + η(t). The pedestrian giving the
way also changes the velocity value following the s-curve
function

vD
i (t) =

vd
i

1 + exp [(αc − ti) /βc]
, (10)

which directly depends on the time to the crossing point ti.
Despite its simplicity, these geometric-based rules are quite
effective in modelling the negotiation of the space in the
shared environment.

V. SIMULATION RESULTS

In this section, we first present the results of the sim-
ulations of the PHSFM with synthesised trajectories for
the passing and the crossing cases. To better highlight the
effectiveness of the proposed model in reproducing specific
evasive manoeuvres performed by pedestrians, we present a
comparison with the SFM and the HSFM. The parameters
related to the dynamic model of pedestrians in (2) have been
chosen coherently as reported in [15], except for kλ = 0.02,
which generates smoother trajectories. The radius ri of each
pedestrian has been set to 0.3 [m], while mass mi have been
randomly generated in the intervals [60, 90] [kg]. Based on
the evidence coming from real data (see Section VI), we have
set dper = 0.8 [m] and Tc = 3 [s]. The IPS parameters were
set to d = 2.5 [m], θ = 45◦ and l = 3.5 [m] (see Figure 1-
b). The length is adequate for large and fairly crowded
environment, while the angular aperture is robust to some
typical phenomena, such as lane formation or individuals
moving in groups (which is not explicitly considered in this
first version of the model). According to these values, we set
αp = 1, βp = 0.2 of (5) in order to have free desired velocity
for a gap greater than ϑu = 1.5 [m] (with ϑl = 0.5 [m]) and
a small but non-zero velocity at the origin. The crossing case
instead requires that in the worst case pedestrian i is able to
stop (hence s/he will stop for ti < 1 [s]), while he can walk
freely for ti > Tc. For the s-curve function (10), we have
chosen αc = 1.5 and βc = 0.2, while c = 0.8 in (8), and
ηmax = 45◦ and b = 0.2 in (9).
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Fig. 4. Corridor scenario: (a) Social Force Model, (b) HSFM, (c) PHSFM.
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Fig. 5. Intersecting corridors scenario: (a) Social Force Model, (b) HSFM,
(c) PHSFM.

The two different scenarios are the corridor (Figure 4) for
the passing case and the intersecting corridors (Figure 5) for
the crossing case. In the interest of comparison, only two
pedestrians per simulation are considered. From the reported
trajectories, it is evident how the SFM generates in this
specific scenario unnatural bouncing trajectories (Figure 4-a),
while for the HSFM (Figure 4-b) this effect is mitigated, but
the pedestrians do not account for the reciprocal behaviour.
In the PHSFM case (Figure 4-c), the possible collision is
perceived in advance and a smooth avoidance manoeuvre
is accomplished by both the pedestrians, according to the
behaviour described in Section IV-B.

Similar results are obtained in the intersecting corridors
case in Figure 5. Under the forces of the SFM, the agents
reciprocally push each other away (Figure 5-a), while thanks
to the persons’ orientation, the HSFM generate more com-
pliant trajectories (Figure 5-b). In Figure 5-c the shared
avoidance is exhibited, with the pedestrian moving vertically
that successfully avoid the other giving the way, while the
other shows a small path adjustment according to the shared
effort coefficient, as described in Section IV-C.

VI. VALIDATION ON REAL DATA

To validate the PHSFM with actual trajectories traveled by
pedestrians in urban environments, and, again, to compare

it with the SFM and the HSFM, we conducted simula-
tions comparing the generated trajectories with the dataset
from [30], [31], [32]. The selected datasets respectively
include motion capture of hand-labelled pedestrians’ trajec-
tories for two environments: a controlled experiment at the
Instituto Tecnológico de Buenos Aires (ITBA) and a corridor
in a shopping center in Japan. In the interest of space, we
report only the results with the dataset [30], being the other
results similar. The prediction accuracy depends to a large
extent on the simulation parameters, which are a function
also of the environment. Therefore, all the parameters are the
same of Section V, except for ri = 0.25 [m], d = 1.5 [m],
θ = 45◦, l = 2 [m], kλ = 0.2 and ηmax = 45◦, b = 0.2 for
the passing case, or ηmax = 80◦, b = 0.5 for the crossing
case. For a qualitative analysis, Figure 6 reports examples of
interactions captured from the dataset: both the actual and
simulated trajectories are reported. Notice how the HSFM
has a stiffer behaviour that the PHSFM, which is also evident
in the crossing case, not reported here due to space limits.
This is mainly due to the unmodelled action and reaction
negotiation of the pedestrian. From a quantitative view-point,
the mean errors of the two models, computed for each agent
as the error in position between the predicted trajectory and
the actual trajectory at the same time instant, are substantially
the same. However, the maximum error is slightly better
for the HSFM. Nonetheless, the possibility of modelling the
action and reaction becomes a clear advantage for the passing
case, in both qualitative and quantitative terms.

VII. CONCLUSION

In this work, we have presented a new human motion
model based on the well-known Social Force Model. A
collision prediction phase and a geometric method to rep-
resent evasion manoeuvres performed by pedestrians during
interactions in shared spaces has been applied on top of the
HSFM, hence the name Predictive HSFM. The validation of
the model has been demonstrated throughout a set of simu-
lations and comparisons with real-life human trajectories in
urban environments. Future research directions will focus on
the application of the model to reactive planning algorithms
in a stochastic framework, that is when the possible action
and reaction manoeuvres are weighted by a certain degree of
confidence. Another important improvement is related to the
extension to social groups of human beings walking together.
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Fig. 6. First example: (a) SFM, (b) HSFM and (c) PHSFM. Both actual trajectories (solid lines, from [30]) and predicted trajectories (dashed lines) are
reported.
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